Properties

Label 154495.b
Number of curves $4$
Conductor $154495$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 154495.b have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1 + T\)
\(11\)\(1 + T\)
\(53\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 154495.b do not have complex multiplication.

Modular form 154495.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - q^{5} + 3 q^{8} - 3 q^{9} + q^{10} - q^{11} + 2 q^{13} - q^{16} + 6 q^{17} + 3 q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 154495.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
154495.b1 154495b3 \([1, -1, 1, -166258, 26127606]\) \(22930509321/6875\) \(152379982761875\) \([2]\) \(605696\) \(1.6995\)  
154495.b2 154495b4 \([1, -1, 1, -81988, -8805118]\) \(2749884201/73205\) \(1622542056448445\) \([2]\) \(605696\) \(1.6995\)  
154495.b3 154495b2 \([1, -1, 1, -11763, 296042]\) \(8120601/3025\) \(67047192415225\) \([2, 2]\) \(302848\) \(1.3529\)  
154495.b4 154495b1 \([1, -1, 1, 2282, 31996]\) \(59319/55\) \(-1219039862095\) \([2]\) \(151424\) \(1.0063\) \(\Gamma_0(N)\)-optimal