sage:E = EllipticCurve("a1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 14a have
rank 0.
| |
| Bad L-factors: |
| Prime |
L-Factor |
| 2 | 1+T |
| 7 | 1−T |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over Fp |
| 3 |
1+2T+3T2 |
1.3.c
|
| 5 |
1+5T2 |
1.5.a
|
| 11 |
1+11T2 |
1.11.a
|
| 13 |
1+4T+13T2 |
1.13.e
|
| 17 |
1−6T+17T2 |
1.17.ag
|
| 19 |
1−2T+19T2 |
1.19.ac
|
| 23 |
1+23T2 |
1.23.a
|
| 29 |
1+6T+29T2 |
1.29.g
|
| ⋯ | ⋯ | ⋯ |
|
| |
| See L-function page for more information |
The elliptic curves in class 14a do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎜⎜⎜⎜⎛1233662166333619218369118263218196318291⎠⎟⎟⎟⎟⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.
Elliptic curves in class 14a
sage:E.isogeny_class().curves
| LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
| 14.a6 |
14a1 |
[1,0,1,4,−6] |
9938375/21952 |
−21952 |
[6] |
1 |
−0.48278
|
Γ0(N)-optimal |
| 14.a3 |
14a2 |
[1,0,1,−36,−70] |
4956477625/941192 |
941192 |
[6] |
2 |
−0.13621
|
|
| 14.a2 |
14a3 |
[1,0,1,−171,−874] |
−548347731625/1835008 |
−1835008 |
[2] |
3 |
0.066527
|
|
| 14.a5 |
14a4 |
[1,0,1,−1,0] |
−15625/28 |
−28 |
[6] |
3 |
−1.0321
|
|
| 14.a1 |
14a5 |
[1,0,1,−2731,−55146] |
2251439055699625/25088 |
25088 |
[2] |
6 |
0.41310
|
|
| 14.a4 |
14a6 |
[1,0,1,−11,12] |
128787625/98 |
98 |
[6] |
6 |
−0.68551
|
|