Properties

Label 14a
Number of curves 66
Conductor 1414
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 14a have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
771T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+2T+3T2 1 + 2 T + 3 T^{2} 1.3.c
55 1+5T2 1 + 5 T^{2} 1.5.a
1111 1+11T2 1 + 11 T^{2} 1.11.a
1313 1+4T+13T2 1 + 4 T + 13 T^{2} 1.13.e
1717 16T+17T2 1 - 6 T + 17 T^{2} 1.17.ag
1919 12T+19T2 1 - 2 T + 19 T^{2} 1.19.ac
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 14a do not have complex multiplication.

Modular form 14.2.a.a

Copy content sage:E.q_eigenform(10)
 
qq22q3+q4+2q6+q7q8+q92q124q13q14+q16+6q17q18+2q19+O(q20)q - q^{2} - 2 q^{3} + q^{4} + 2 q^{6} + q^{7} - q^{8} + q^{9} - 2 q^{12} - 4 q^{13} - q^{14} + q^{16} + 6 q^{17} - q^{18} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1233662166333619218369118263218196318291)\left(\begin{array}{rrrrrr} 1 & 2 & 3 & 3 & 6 & 6 \\ 2 & 1 & 6 & 6 & 3 & 3 \\ 3 & 6 & 1 & 9 & 2 & 18 \\ 3 & 6 & 9 & 1 & 18 & 2 \\ 6 & 3 & 2 & 18 & 1 & 9 \\ 6 & 3 & 18 & 2 & 9 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 14a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
14.a6 14a1 [1,0,1,4,6][1, 0, 1, 4, -6] 9938375/219529938375/21952 21952-21952 [6][6] 11 0.48278-0.48278 Γ0(N)\Gamma_0(N)-optimal
14.a3 14a2 [1,0,1,36,70][1, 0, 1, -36, -70] 4956477625/9411924956477625/941192 941192941192 [6][6] 22 0.13621-0.13621  
14.a2 14a3 [1,0,1,171,874][1, 0, 1, -171, -874] 548347731625/1835008-548347731625/1835008 1835008-1835008 [2][2] 33 0.0665270.066527  
14.a5 14a4 [1,0,1,1,0][1, 0, 1, -1, 0] 15625/28-15625/28 28-28 [6][6] 33 1.0321-1.0321  
14.a1 14a5 [1,0,1,2731,55146][1, 0, 1, -2731, -55146] 2251439055699625/250882251439055699625/25088 2508825088 [2][2] 66 0.413100.41310  
14.a4 14a6 [1,0,1,11,12][1, 0, 1, -11, 12] 128787625/98128787625/98 9898 [6][6] 66 0.68551-0.68551