Properties

Label 145600.ee
Number of curves $4$
Conductor $145600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ee1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 145600.ee have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 145600.ee do not have complex multiplication.

Modular form 145600.2.a.ee

Copy content sage:E.q_eigenform(10)
 
\(q + q^{7} - 3 q^{9} - 4 q^{11} - q^{13} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 145600.ee

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
145600.ee1 145600fv3 \([0, 0, 0, -94613900, 354106230000]\) \(22868021811807457713/8953460393696\) \(36673373772578816000000\) \([2]\) \(17694720\) \(3.2944\)  
145600.ee2 145600fv4 \([0, 0, 0, -50069900, -133740682000]\) \(3389174547561866673/74853681183008\) \(306600678125600768000000\) \([2]\) \(17694720\) \(3.2944\)  
145600.ee3 145600fv2 \([0, 0, 0, -6805900, 3752310000]\) \(8511781274893233/3440817243136\) \(14093587427885056000000\) \([2, 2]\) \(8847360\) \(2.9479\)  
145600.ee4 145600fv1 \([0, 0, 0, 1386100, 426358000]\) \(71903073502287/60782804992\) \(-248966369247232000000\) \([2]\) \(4423680\) \(2.6013\) \(\Gamma_0(N)\)-optimal