Properties

Label 145600.dr
Number of curves $4$
Conductor $145600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 145600.dr have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 145600.dr do not have complex multiplication.

Modular form 145600.2.a.dr

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} - 3 q^{9} + q^{13} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 145600.dr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
145600.dr1 145600ce3 \([0, 0, 0, -634700, 185274000]\) \(6903498885921/374712065\) \(1534820618240000000\) \([2]\) \(1572864\) \(2.2456\)  
145600.dr2 145600ce2 \([0, 0, 0, -114700, -11286000]\) \(40743095121/10144225\) \(41550745600000000\) \([2, 2]\) \(786432\) \(1.8990\)  
145600.dr3 145600ce1 \([0, 0, 0, -106700, -13414000]\) \(32798729601/3185\) \(13045760000000\) \([2]\) \(393216\) \(1.5524\) \(\Gamma_0(N)\)-optimal
145600.dr4 145600ce4 \([0, 0, 0, 277300, -71654000]\) \(575722725759/874680625\) \(-3582691840000000000\) \([2]\) \(1572864\) \(2.2456\)