Properties

Label 14520.z
Number of curves $4$
Conductor $14520$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 14520.z have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 14520.z do not have complex multiplication.

Modular form 14520.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - 4 q^{7} + q^{9} + 6 q^{13} - q^{15} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 14520.z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
14520.z1 14520bo4 \([0, 1, 0, -26176, 1620320]\) \(546718898/405\) \(1469403555840\) \([2]\) \(46080\) \(1.2684\)  
14520.z2 14520bo3 \([0, 1, 0, -16496, -811296]\) \(136835858/1875\) \(6802794240000\) \([2]\) \(46080\) \(1.2684\)  
14520.z3 14520bo2 \([0, 1, 0, -1976, 13440]\) \(470596/225\) \(408167654400\) \([2, 2]\) \(23040\) \(0.92178\)  
14520.z4 14520bo1 \([0, 1, 0, 444, 1824]\) \(21296/15\) \(-6802794240\) \([2]\) \(11520\) \(0.57520\) \(\Gamma_0(N)\)-optimal