Properties

Label 14400l
Number of curves $4$
Conductor $14400$
CM \(\Q(\sqrt{-3}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 14400l have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 14400l has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).

Modular form 14400.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q + 4 q^{7} + 2 q^{13} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 14400l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
14400.ey4 14400l1 \([0, 0, 0, 0, 1000]\) \(0\) \(-432000000\) \([2]\) \(4608\) \(0.33588\) \(\Gamma_0(N)\)-optimal \(-3\)
14400.ey2 14400l2 \([0, 0, 0, -1500, 22000]\) \(54000\) \(6912000000\) \([2]\) \(9216\) \(0.68245\)   \(-12\)
14400.ey3 14400l3 \([0, 0, 0, 0, -27000]\) \(0\) \(-314928000000\) \([2]\) \(13824\) \(0.88518\)   \(-3\)
14400.ey1 14400l4 \([0, 0, 0, -13500, -594000]\) \(54000\) \(5038848000000\) \([2]\) \(27648\) \(1.2318\)   \(-12\)