Properties

Label 143650a
Number of curves $1$
Conductor $143650$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 143650a1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 143650a do not have complex multiplication.

Modular form 143650.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - 3 q^{3} + q^{4} - 3 q^{6} + q^{7} + q^{8} + 6 q^{9} + 4 q^{11} - 3 q^{12} + q^{14} + q^{16} + q^{17} + 6 q^{18} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 143650a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
143650.ba1 143650a1 \([1, -1, 1, 1320, 39147]\) \(84375/272\) \(-820557530000\) \([]\) \(430848\) \(0.96928\) \(\Gamma_0(N)\)-optimal