Properties

Label 143650.u
Number of curves $4$
Conductor $143650$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 143650.u have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 143650.u do not have complex multiplication.

Modular form 143650.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + 2 q^{3} + q^{4} - 2 q^{6} + 2 q^{7} - q^{8} + q^{9} - 6 q^{11} + 2 q^{12} - 2 q^{14} + q^{16} - q^{17} - q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 143650.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
143650.u1 143650by3 \([1, 1, 0, -17612000, -5603200000]\) \(8010684753304969/4456448000000\) \(336100364288000000000000\) \([2]\) \(26542080\) \(3.2047\)  
143650.u2 143650by1 \([1, 1, 0, -10788625, 13634767125]\) \(1841373668746009/31443200\) \(2371411261700000000\) \([2]\) \(8847360\) \(2.6554\) \(\Gamma_0(N)\)-optimal
143650.u3 143650by2 \([1, 1, 0, -10450625, 14529453125]\) \(-1673672305534489/241375690000\) \(-18204286763643906250000\) \([2]\) \(17694720\) \(3.0019\)  
143650.u4 143650by4 \([1, 1, 0, 68916000, -44281216000]\) \(479958568556831351/289000000000000\) \(-21796059390625000000000000\) \([2]\) \(53084160\) \(3.5512\)