Properties

Label 1430j
Number of curves $1$
Conductor $1430$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1430j1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1 - T\)
\(11\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1430j do not have complex multiplication.

Modular form 1430.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + 3 q^{3} + q^{4} + q^{5} + 3 q^{6} - q^{7} + q^{8} + 6 q^{9} + q^{10} + q^{11} + 3 q^{12} - q^{13} - q^{14} + 3 q^{15} + q^{16} - 3 q^{17} + 6 q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1430j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1430.k1 1430j1 \([1, -1, 1, -57, 199]\) \(-20145851361/3141710\) \(-3141710\) \([]\) \(448\) \(-0.024647\) \(\Gamma_0(N)\)-optimal