Properties

Label 141570.eg
Number of curves $1$
Conductor $141570$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 141570.eg1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 141570.eg do not have complex multiplication.

Modular form 141570.2.a.eg

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} - q^{7} + q^{8} + q^{10} + q^{13} - q^{14} + q^{16} + 4 q^{17} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 141570.eg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141570.eg1 141570cf1 \([1, -1, 1, 187648, -48190139]\) \(20956092093/40842230\) \(-1424153659343333490\) \([]\) \(2419200\) \(2.1679\) \(\Gamma_0(N)\)-optimal