Show commands for: Magma / Pari/GP / SageMath

This is a model for the modular curve $X_0(14)$.

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, 4, -6]) # or

sage: E = EllipticCurve("14.a6")

gp: E = ellinit([1, 0, 1, 4, -6]) \\ or

gp: E = ellinit("14.a6")

magma: E := EllipticCurve([1, 0, 1, 4, -6]); // or

magma: E := EllipticCurve("14.a6");

$$y^2+xy+y=x^3+4x-6$$

## Mordell-Weil group structure

$$\Z/{6}\Z$$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(9, 23\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(1, -1\right)$$, $$\left(2, 2\right)$$, $$\left(2, -5\right)$$, $$\left(9, 23\right)$$, $$\left(9, -33\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)  magma: Conductor(E); Conductor: $$14$$ = $$2 \cdot 7$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-21952$$ = $$-1 \cdot 2^{6} \cdot 7^{3}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{9938375}{21952}$$ = $$2^{-6} \cdot 5^{3} \cdot 7^{-3} \cdot 43^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$0$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1$$ sage: E.period_lattice().omega()  gp: E.omega  magma: RealPeriod(E); Real period: $$1.9813419560668832341695716767$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$6$$  = $$2\cdot3$$ sage: E.torsion_order()  gp: elltors(E)  magma: Order(TorsionSubgroup(E)); Torsion order: $$6$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

magma: ModularForm(E);

$$q - q^{2} - 2q^{3} + q^{4} + 2q^{6} + q^{7} - q^{8} + q^{9} - 2q^{12} - 4q^{13} - q^{14} + q^{16} + 6q^{17} - q^{18} + 2q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 1 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L(E,1)$$ ≈ $$0.33022365934448053902826194612222809986$$

## Local data

This elliptic curve is semistable. There are 2 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_{6}$$ Non-split multiplicative 1 1 6 6
$$7$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X16.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 2 & 1 \end{array}\right)$ and has index 6.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B
$$3$$ Cs.1.1

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) 2 3 7 nonsplit ordinary split 0 0 1 0 1 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3 and 6.
Its isogeny class 14.a consists of 6 curves linked by isogenies of degrees dividing 18.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{6}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-7})$$ $$\Z/2\Z \times \Z/6\Z$$ 2.0.7.1-28.2-a7 $2$ $$\Q(\sqrt{-3})$$ $$\Z/3\Z \times \Z/6\Z$$ 2.0.3.1-196.2-a3 $4$ 4.2.448.1 $$\Z/12\Z$$ Not in database $4$ $$\Q(\sqrt{-3}, \sqrt{-7})$$ $$\Z/6\Z \times \Z/6\Z$$ Not in database $8$ 8.0.120472576.1 $$\Z/2\Z \times \Z/12\Z$$ Not in database $8$ 8.0.9834496.2 $$\Z/2\Z \times \Z/12\Z$$ Not in database $8$ 8.0.16257024.1 $$\Z/3\Z \times \Z/12\Z$$ Not in database $9$ 9.3.2315685267.2 $$\Z/18\Z$$ Not in database $16$ Deg 16 $$\Z/24\Z$$ Not in database $16$ Deg 16 $$\Z/6\Z \times \Z/12\Z$$ Not in database $16$ 16.0.634562281237118976.5 $$\Z/6\Z \times \Z/12\Z$$ Not in database $18$ 18.0.144784752906623254803.2 $$\Z/3\Z \times \Z/18\Z$$ Not in database $18$ 18.0.3674701490222020866048.1 $$\Z/3\Z \times \Z/18\Z$$ Not in database $18$ 18.0.432324955623130532869681152.2 $$\Z/3\Z \times \Z/18\Z$$ Not in database $18$ 18.0.1839302601739695422127.2 $$\Z/2\Z \times \Z/18\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.