Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2-38171025x-86818422375\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z-38171025xz^2-86818422375z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-49469649075x-4049858269595250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(28395/4, -28395/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 139650 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19$ |
|
| Discriminant: | $\Delta$ | = | $304457705541864492187500$ | = | $2^{2} \cdot 3^{20} \cdot 5^{10} \cdot 7^{6} \cdot 19 $ |
|
| j-invariant: | $j$ | = | \( \frac{3345930611358906241}{165622259047500} \) | = | $2^{-2} \cdot 3^{-20} \cdot 5^{-4} \cdot 11^{6} \cdot 19^{-1} \cdot 47^{3} \cdot 263^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.2651624186651183632571883171$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4874883879204115234041322788$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.081271340032757$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.401108663700441$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.060925397874725015151429521969$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2\cdot2^{2}\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.48740318299780012121143617575 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.487403183 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.060925 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 0.487403183\end{aligned}$$
Modular invariants
Modular form 139650.2.a.bd
For more coefficients, see the Downloads section to the right.
| Modular degree: | 26542080 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $3$ | $2$ | $I_{20}$ | nonsplit multiplicative | 1 | 1 | 20 | 20 |
| $5$ | $4$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
| $7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 15960 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 6 \\ 15954 & 15955 \end{array}\right),\left(\begin{array}{rr} 2279 & 0 \\ 0 & 15959 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 15953 & 8 \\ 15952 & 9 \end{array}\right),\left(\begin{array}{rr} 288 & 15113 \\ 13993 & 2640 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 5419 & 5418 \\ 4858 & 8275 \end{array}\right),\left(\begin{array}{rr} 6383 & 6832 \\ 5012 & 11367 \end{array}\right),\left(\begin{array}{rr} 1688 & 11403 \\ 2765 & 9122 \end{array}\right),\left(\begin{array}{rr} 5321 & 9128 \\ 9884 & 4593 \end{array}\right)$.
The torsion field $K:=\Q(E[15960])$ is a degree-$183000209817600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/15960\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 23275 = 5^{2} \cdot 7^{2} \cdot 19 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 46550 = 2 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
| $5$ | additive | $18$ | \( 1862 = 2 \cdot 7^{2} \cdot 19 \) |
| $7$ | additive | $26$ | \( 2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19 \) |
| $19$ | nonsplit multiplicative | $20$ | \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 139650.bd
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 570.i2, its twist by $-35$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{19}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{665}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{35}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{19}, \sqrt{35})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 19 |
|---|---|---|---|---|---|
| Reduction type | nonsplit | nonsplit | add | add | nonsplit |
| $\lambda$-invariant(s) | 6 | 0 | - | - | 0 |
| $\mu$-invariant(s) | 0 | 0 | - | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.