Learn more

Refine search


Results (1-50 of 401 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
139650.a1 139650.a \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $7.981829041$ $[1, 1, 0, -19058575, -32032722875]$ \(y^2+xy=x^3+x^2-19058575x-32032722875\)
139650.a2 139650.a \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $2.660609680$ $[1, 1, 0, -10697950, -60215103500]$ \(y^2+xy=x^3+x^2-10697950x-60215103500\)
139650.b1 139650.b \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $2$ $\mathsf{trivial}$ $3.386146014$ $[1, 1, 0, 6800, -176000]$ \(y^2+xy=x^3+x^2+6800x-176000\)
139650.c1 139650.c \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 155550, 117616500]$ \(y^2+xy=x^3+x^2+155550x+117616500\)
139650.d1 139650.d \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $2$ $\mathsf{trivial}$ $0.195317479$ $[1, 1, 0, -37755, 2813175]$ \(y^2+xy=x^3+x^2-37755x+2813175\)
139650.e1 139650.e \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -274897375, 2680193717125]$ \(y^2+xy=x^3+x^2-274897375x+2680193717125\)
139650.f1 139650.f \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -153878400, -2626318080000]$ \(y^2+xy=x^3+x^2-153878400x-2626318080000\)
139650.g1 139650.g \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -35736950, 85662796500]$ \(y^2+xy=x^3+x^2-35736950x+85662796500\)
139650.h1 139650.h \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -38490, -1519650]$ \(y^2+xy=x^3+x^2-38490x-1519650\)
139650.h2 139650.h \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 8060, -169700]$ \(y^2+xy=x^3+x^2+8060x-169700\)
139650.i1 139650.i \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -3739950, 1193656500]$ \(y^2+xy=x^3+x^2-3739950x+1193656500\)
139650.j1 139650.j \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $4.984006659$ $[1, 1, 0, -4245421275, 106468732963125]$ \(y^2+xy=x^3+x^2-4245421275x+106468732963125\)
139650.j2 139650.j \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.492003329$ $[1, 1, 0, -265396275, 1662734638125]$ \(y^2+xy=x^3+x^2-265396275x+1662734638125\)
139650.j3 139650.j \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $4.984006659$ $[1, 1, 0, -205371275, 2435076313125]$ \(y^2+xy=x^3+x^2-205371275x+2435076313125\)
139650.j4 139650.j \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $9.968013319$ $[1, 1, 0, -176804275, -895737249875]$ \(y^2+xy=x^3+x^2-176804275x-895737249875\)
139650.j5 139650.j \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.984006659$ $[1, 1, 0, -20396275, 13149638125]$ \(y^2+xy=x^3+x^2-20396275x+13149638125\)
139650.j6 139650.j \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $9.968013319$ $[1, 1, 0, 4691725, 1584070125]$ \(y^2+xy=x^3+x^2+4691725x+1584070125\)
139650.k1 139650.k \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -3133575, -2136352875]$ \(y^2+xy=x^3+x^2-3133575x-2136352875\)
139650.k2 139650.k \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -193575, -34252875]$ \(y^2+xy=x^3+x^2-193575x-34252875\)
139650.l1 139650.l \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $2.647747290$ $[1, 1, 0, -107251225, 427470461125]$ \(y^2+xy=x^3+x^2-107251225x+427470461125\)
139650.l2 139650.l \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.323873645$ $[1, 1, 0, -6703225, 6677081125]$ \(y^2+xy=x^3+x^2-6703225x+6677081125\)
139650.l3 139650.l \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $2.647747290$ $[1, 1, 0, -6507225, 7086133125]$ \(y^2+xy=x^3+x^2-6507225x+7086133125\)
139650.l4 139650.l \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $2.647747290$ $[1, 1, 0, -431225, 97753125]$ \(y^2+xy=x^3+x^2-431225x+97753125\)
139650.m1 139650.m \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $0.574671131$ $[1, 1, 0, -2650, 44500]$ \(y^2+xy=x^3+x^2-2650x+44500\)
139650.m2 139650.m \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.149342263$ $[1, 1, 0, 4350, 247500]$ \(y^2+xy=x^3+x^2+4350x+247500\)
139650.n1 139650.n \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $5.614655572$ $[1, 1, 0, -37265, -3044775]$ \(y^2+xy=x^3+x^2-37265x-3044775\)
139650.o1 139650.o \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $4.627554965$ $[1, 1, 0, 2314000, -1796617500]$ \(y^2+xy=x^3+x^2+2314000x-1796617500\)
139650.p1 139650.p \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -6511775, 6722350125]$ \(y^2+xy=x^3+x^2-6511775x+6722350125\)
139650.q1 139650.q \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $2$ $\mathsf{trivial}$ $1.480167679$ $[1, 1, 0, -651375, 202753125]$ \(y^2+xy=x^3+x^2-651375x+202753125\)
139650.r1 139650.r \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -102435, -12665925]$ \(y^2+xy=x^3+x^2-102435x-12665925\)
139650.s1 139650.s \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $46.23763162$ $[1, 1, 0, -79996200, -276425766000]$ \(y^2+xy=x^3+x^2-79996200x-276425766000\)
139650.s2 139650.s \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $15.41254387$ $[1, 1, 0, 187084425, -1457283472875]$ \(y^2+xy=x^3+x^2+187084425x-1457283472875\)
139650.t1 139650.t \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $2$ $\mathsf{trivial}$ $0.509087970$ $[1, 1, 0, 10, 120]$ \(y^2+xy=x^3+x^2+10x+120\)
139650.u1 139650.u \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -39225, -6593355]$ \(y^2+xy=x^3+x^2-39225x-6593355\)
139650.v1 139650.v \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1104205, -438028835]$ \(y^2+xy=x^3+x^2-1104205x-438028835\)
139650.w1 139650.w \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -2704405575, 54157429387125]$ \(y^2+xy=x^3+x^2-2704405575x+54157429387125\)
139650.x1 139650.x \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.375109766$ $[1, 1, 0, -222100, 39346000]$ \(y^2+xy=x^3+x^2-222100x+39346000\)
139650.x2 139650.x \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $2.750219532$ $[1, 1, 0, 1900, 1938000]$ \(y^2+xy=x^3+x^2+1900x+1938000\)
139650.y1 139650.y \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -9785325, -12159547875]$ \(y^2+xy=x^3+x^2-9785325x-12159547875\)
139650.z1 139650.z \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $5.204299581$ $[1, 1, 0, -3033125, -2034481875]$ \(y^2+xy=x^3+x^2-3033125x-2034481875\)
139650.ba1 139650.ba \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -536384650, -4782494259500]$ \(y^2+xy=x^3+x^2-536384650x-4782494259500\)
139650.bb1 139650.bb \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $3.168424812$ $[1, 1, 0, -30650, -2482500]$ \(y^2+xy=x^3+x^2-30650x-2482500\)
139650.bc1 139650.bc \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $3.841489740$ $[1, 1, 0, -45212325, 117040222125]$ \(y^2+xy=x^3+x^2-45212325x+117040222125\)
139650.bd1 139650.bd \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -603288025, -5703668969375]$ \(y^2+xy=x^3+x^2-603288025x-5703668969375\)
139650.bd2 139650.bd \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -38171025, -86818422375]$ \(y^2+xy=x^3+x^2-38171025x-86818422375\)
139650.bd3 139650.bd \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -37705525, -89131491875]$ \(y^2+xy=x^3+x^2-37705525x-89131491875\)
139650.bd4 139650.bd \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2327525, -1429429875]$ \(y^2+xy=x^3+x^2-2327525x-1429429875\)
139650.be1 139650.be \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $36.19972872$ $[1, 1, 0, -13686950, -26651083500]$ \(y^2+xy=x^3+x^2-13686950x-26651083500\)
139650.be2 139650.be \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $12.06657624$ $[1, 1, 0, 107863675, 334232722125]$ \(y^2+xy=x^3+x^2+107863675x+334232722125\)
139650.bf1 139650.bf \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.547347772$ $[1, 1, 0, -9825, 392085]$ \(y^2+xy=x^3+x^2-9825x+392085\)
Next   Download to