Learn more

Refine search


Results (40 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
570.i2 570.i \( 2 \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -31160, 2011565]$ \(y^2+xy+y=x^3+x^2-31160x+2011565\)
1710.e2 1710.e \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $2.681818415$ $[1, -1, 0, -280440, -54592700]$ \(y^2+xy=x^3-x^2-280440x-54592700\)
2850.h2 2850.h \( 2 \cdot 3 \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $0.268552591$ $[1, 0, 1, -779001, 253003648]$ \(y^2+xy+y=x^3-779001x+253003648\)
4560.x2 4560.x \( 2^{4} \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/4\Z$ $1$ $[0, 1, 0, -498560, -129737292]$ \(y^2=x^3+x^2-498560x-129737292\)
8550.s2 8550.s \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -7011005, -6831098503]$ \(y^2+xy+y=x^3-x^2-7011005x-6831098503\)
10830.p2 10830.p \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/4\Z$ $1$ $[1, 0, 1, -11248768, -13887315694]$ \(y^2+xy+y=x^3-11248768x-13887315694\)
13680.e2 13680.e \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $5.070261096$ $[0, 0, 0, -4487043, 3498419842]$ \(y^2=x^3-4487043x+3498419842\)
18240.a2 18240.a \( 2^{6} \cdot 3 \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $6.507477044$ $[0, -1, 0, -1994241, -1035904095]$ \(y^2=x^3-x^2-1994241x-1035904095\)
18240.cg2 18240.cg \( 2^{6} \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1994241, 1035904095]$ \(y^2=x^3+x^2-1994241x+1035904095\)
22800.br2 22800.br \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -12464008, -16192233488]$ \(y^2=x^3-x^2-12464008x-16192233488\)
27930.db2 27930.db \( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -1526841, -694547379]$ \(y^2+xy=x^3-1526841x-694547379\)
32490.bk2 32490.bk \( 2 \cdot 3^{2} \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -101238908, 374957523731]$ \(y^2+xy+y=x^3-x^2-101238908x+374957523731\)
54150.bm2 54150.bm \( 2 \cdot 3 \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $8.921296581$ $[1, 1, 1, -281219188, -1735914461719]$ \(y^2+xy+y=x^3+x^2-281219188x-1735914461719\)
54720.ct2 54720.ct \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $3.366178501$ $[0, 0, 0, -17948172, 27987358736]$ \(y^2=x^3-17948172x+27987358736\)
54720.ex2 54720.ex \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $14.17764690$ $[0, 0, 0, -17948172, -27987358736]$ \(y^2=x^3-17948172x-27987358736\)
68400.gc2 68400.gc \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $14.20957404$ $[0, 0, 0, -112176075, 437302480250]$ \(y^2=x^3-112176075x+437302480250\)
68970.j2 68970.j \( 2 \cdot 3 \cdot 5 \cdot 11^{2} \cdot 19 \) $1$ $\Z/2\Z$ $4.206859888$ $[1, 1, 0, -3770362, -2696245064]$ \(y^2+xy=x^3+x^2-3770362x-2696245064\)
83790.by2 83790.by \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -13741569, 18752779233]$ \(y^2+xy=x^3-x^2-13741569x+18752779233\)
86640.ba2 86640.ba \( 2^{4} \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -179980280, 888788204400]$ \(y^2=x^3-x^2-179980280x+888788204400\)
91200.j2 91200.j \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $6.837775641$ $[0, -1, 0, -49856033, 129587723937]$ \(y^2=x^3-x^2-49856033x+129587723937\)
91200.iz2 91200.iz \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -49856033, -129587723937]$ \(y^2=x^3+x^2-49856033x-129587723937\)
96330.a2 96330.a \( 2 \cdot 3 \cdot 5 \cdot 13^{2} \cdot 19 \) $1$ $\Z/2\Z$ $4.479830107$ $[1, 1, 0, -5266043, 4445738913]$ \(y^2+xy=x^3+x^2-5266043x+4445738913\)
139650.bd2 139650.bd \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -38171025, -86818422375]$ \(y^2+xy=x^3+x^2-38171025x-86818422375\)
162450.a2 162450.a \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $3.799382673$ $[1, -1, 0, -2530972692, 46867159493716]$ \(y^2+xy=x^3-x^2-2530972692x+46867159493716\)
164730.cy2 164730.cy \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \cdot 19 \) $2$ $\Z/2\Z$ $1.722057527$ $[1, 0, 0, -9005246, 9945856440]$ \(y^2+xy=x^3-9005246x+9945856440\)
206910.cz2 206910.cz \( 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -33933263, 72764683467]$ \(y^2+xy+y=x^3-x^2-33933263x+72764683467\)
223440.bg2 223440.bg \( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -24429456, 44451032256]$ \(y^2=x^3-x^2-24429456x+44451032256\)
259920.f2 259920.f \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1619822523, -23995661696278]$ \(y^2=x^3-1619822523x-23995661696278\)
273600.be2 273600.be \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -448704300, -3498419842000]$ \(y^2=x^3-448704300x-3498419842000\)
273600.ow2 273600.ow \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -448704300, 3498419842000]$ \(y^2=x^3-448704300x+3498419842000\)
288990.fh2 288990.fh \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -47394392, -120082345041]$ \(y^2+xy+y=x^3-x^2-47394392x-120082345041\)
301530.bq2 301530.bq \( 2 \cdot 3 \cdot 5 \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $15.00073798$ $[1, 1, 1, -16483651, -24639550027]$ \(y^2+xy+y=x^3+x^2-16483651x-24639550027\)
344850.hs2 344850.hs \( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -94259063, -336842114883]$ \(y^2+xy=x^3-94259063x-336842114883\)
346560.ct2 346560.ct \( 2^{6} \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -719921121, -7109585714079]$ \(y^2=x^3-x^2-719921121x-7109585714079\)
346560.fs2 346560.fs \( 2^{6} \cdot 3 \cdot 5 \cdot 19^{2} \) $2$ $\Z/2\Z$ $1.920243447$ $[0, 1, 0, -719921121, 7109585714079]$ \(y^2=x^3+x^2-719921121x+7109585714079\)
418950.mc2 418950.mc \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -343539230, 2343753864897]$ \(y^2+xy+y=x^3-x^2-343539230x+2343753864897\)
433200.kr2 433200.kr \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -4499507008, 111089526535988]$ \(y^2=x^3+x^2-4499507008x+111089526535988\)
479370.bm2 479370.bm \( 2 \cdot 3 \cdot 5 \cdot 19 \cdot 29^{2} \) $1$ $\Z/2\Z$ $1.186437620$ $[1, 0, 1, -26205578, 49374530048]$ \(y^2+xy+y=x^3-26205578x+49374530048\)
481650.is2 481650.is \( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \cdot 19 \) $1$ $\Z/2\Z$ $3.892348254$ $[1, 0, 0, -131651088, 555980666292]$ \(y^2+xy=x^3-131651088x+555980666292\)
494190.bo2 494190.bo \( 2 \cdot 3^{2} \cdot 5 \cdot 17^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -81047214, -268538123880]$ \(y^2+xy=x^3-x^2-81047214x-268538123880\)
  Download to