Show commands: SageMath
Rank
The elliptic curves in class 13650n have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 13650n do not have complex multiplication.Modular form 13650.2.a.n
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 13650n
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 13650.k2 | 13650n1 | \([1, 1, 0, -345, -17775]\) | \(-36495256013/1053197964\) | \(-131649745500\) | \([2]\) | \(21120\) | \(0.81409\) | \(\Gamma_0(N)\)-optimal |
| 13650.k1 | 13650n2 | \([1, 1, 0, -12495, -540225]\) | \(1726143065560493/9662982966\) | \(1207872870750\) | \([2]\) | \(42240\) | \(1.1607\) |