Show commands: SageMath
Rank
The elliptic curves in class 13328.q have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 13328.q do not have complex multiplication.Modular form 13328.2.a.q
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 13328.q
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 13328.q1 | 13328q2 | \([0, 0, 0, -6419, 87122]\) | \(60698457/28322\) | \(13648097189888\) | \([2]\) | \(18432\) | \(1.2148\) | |
| 13328.q2 | 13328q1 | \([0, 0, 0, 1421, 10290]\) | \(658503/476\) | \(-229379784704\) | \([2]\) | \(9216\) | \(0.86825\) | \(\Gamma_0(N)\)-optimal |