Properties

Label 132878h
Number of curves $1$
Conductor $132878$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 132878h1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(29\)\(1\)
\(79\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 3 T + 3 T^{2}\) 1.3.ad
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 132878h do not have complex multiplication.

Modular form 132878.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 3 q^{3} + q^{4} + q^{5} + 3 q^{6} - 5 q^{7} - q^{8} + 6 q^{9} - q^{10} + 2 q^{11} - 3 q^{12} + 7 q^{13} + 5 q^{14} - 3 q^{15} + q^{16} + 2 q^{17} - 6 q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 132878h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
132878.a1 132878h1 \([1, -1, 0, -1611934, -786530204]\) \(778713392276001/894003184\) \(531773942891454064\) \([]\) \(7848960\) \(2.3142\) \(\Gamma_0(N)\)-optimal