Properties

Label 13200.b
Number of curves $4$
Conductor $13200$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 13200.b have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 13200.b do not have complex multiplication.

Modular form 13200.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{7} + q^{9} + q^{11} - 2 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 13200.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
13200.b1 13200m3 \([0, -1, 0, -30008, -1987488]\) \(186779563204/360855\) \(5773680000000\) \([2]\) \(49152\) \(1.3376\)  
13200.b2 13200m4 \([0, -1, 0, -25008, 1522512]\) \(108108036004/658845\) \(10541520000000\) \([4]\) \(49152\) \(1.3376\)  
13200.b3 13200m2 \([0, -1, 0, -2508, -7488]\) \(436334416/245025\) \(980100000000\) \([2, 2]\) \(24576\) \(0.99106\)  
13200.b4 13200m1 \([0, -1, 0, 617, -1238]\) \(103737344/61875\) \(-15468750000\) \([2]\) \(12288\) \(0.64449\) \(\Gamma_0(N)\)-optimal