Properties

Label 130050ek
Number of curves $1$
Conductor $130050$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ek1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 130050ek1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 130050ek do not have complex multiplication.

Modular form 130050.2.a.ek

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 5 q^{7} - q^{8} + 4 q^{11} - 3 q^{13} + 5 q^{14} + q^{16} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 130050ek

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
130050.b1 130050ek1 \([1, -1, 0, 3529503, 413549901]\) \(11053587253415/6565418768\) \(-2888174954395371229200\) \([]\) \(11612160\) \(2.8072\) \(\Gamma_0(N)\)-optimal