Show commands: SageMath
Rank
The elliptic curves in class 129285.c have rank \(2\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 129285.c do not have complex multiplication.Modular form 129285.2.a.c
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 129285.c
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 129285.c1 | 129285t4 | \([1, -1, 1, -23736758, 44518229552]\) | \(420339554066191969/244298925\) | \(859625318162756925\) | \([2]\) | \(5505024\) | \(2.7659\) | |
| 129285.c2 | 129285t2 | \([1, -1, 1, -1492133, 687420452]\) | \(104413920565969/2472575625\) | \(8700360054069425625\) | \([2, 2]\) | \(2752512\) | \(2.4194\) | |
| 129285.c3 | 129285t1 | \([1, -1, 1, -206888, -20492494]\) | \(278317173889/109245825\) | \(384408065134047825\) | \([2]\) | \(1376256\) | \(2.0728\) | \(\Gamma_0(N)\)-optimal |
| 129285.c4 | 129285t3 | \([1, -1, 1, 188572, 2147616956]\) | \(210751100351/566398828125\) | \(-1993012342702555078125\) | \([2]\) | \(5505024\) | \(2.7659\) |