Properties

Label 129285.c
Number of curves $4$
Conductor $129285$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 129285.c have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 + T\)
\(13\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 129285.c do not have complex multiplication.

Modular form 129285.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - q^{5} - 4 q^{7} + 3 q^{8} + q^{10} + 4 q^{14} - q^{16} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 129285.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
129285.c1 129285t4 \([1, -1, 1, -23736758, 44518229552]\) \(420339554066191969/244298925\) \(859625318162756925\) \([2]\) \(5505024\) \(2.7659\)  
129285.c2 129285t2 \([1, -1, 1, -1492133, 687420452]\) \(104413920565969/2472575625\) \(8700360054069425625\) \([2, 2]\) \(2752512\) \(2.4194\)  
129285.c3 129285t1 \([1, -1, 1, -206888, -20492494]\) \(278317173889/109245825\) \(384408065134047825\) \([2]\) \(1376256\) \(2.0728\) \(\Gamma_0(N)\)-optimal
129285.c4 129285t3 \([1, -1, 1, 188572, 2147616956]\) \(210751100351/566398828125\) \(-1993012342702555078125\) \([2]\) \(5505024\) \(2.7659\)