Properties

Label 1290h
Number of curves $1$
Conductor $1290$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1290h1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(43\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1290h do not have complex multiplication.

Modular form 1290.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - 3 q^{7} - q^{8} + q^{9} - q^{10} + 4 q^{11} + q^{12} - 3 q^{13} + 3 q^{14} + q^{15} + q^{16} - q^{18} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1290h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1290.f1 1290h1 \([1, 0, 1, 120229952, -3351306510322]\) \(192203697666261893287480365959/4963160303408775168000000000\) \(-4963160303408775168000000000\) \([]\) \(1068480\) \(3.9945\) \(\Gamma_0(N)\)-optimal