Learn more about

Refine search


Results (33 matches)

  Download to        
Curve Isogeny class
LMFDB label Cremona label LMFDB label Cremona label Weierstrass coefficients Rank Torsion structure
1290.a1 1290a2 1290.a 1290a $[1, 1, 0, -507, -4611]$ $0$ $[2]$
1290.a2 1290a1 1290.a 1290a $[1, 1, 0, -27, -99]$ $0$ $[2]$
1290.b1 1290b1 1290.b 1290b $[1, 1, 0, -154527, -23386059]$ $0$ $[2]$
1290.b2 1290b2 1290.b 1290b $[1, 1, 0, -92027, -42398559]$ $0$ $[2]$
1290.c1 1290e4 1290.c 1290e $[1, 0, 1, -66374, 6575672]$ $1$ $[2]$
1290.c2 1290e3 1290.c 1290e $[1, 0, 1, -24454, -1401544]$ $1$ $[2]$
1290.c3 1290e2 1290.c 1290e $[1, 0, 1, -4454, 86456]$ $1$ $[2, 2]$
1290.c4 1290e1 1290.c 1290e $[1, 0, 1, 666, 8632]$ $1$ $[2]$
1290.d1 1290c1 1290.d 1290c $[1, 0, 1, 5066, -4779064]$ $0$ trivial
1290.e1 1290d3 1290.e 1290d $[1, 0, 1, -839, 9212]$ $0$ $[2]$
1290.e2 1290d2 1290.e 1290d $[1, 0, 1, -89, -88]$ $0$ $[2, 2]$
1290.e3 1290d1 1290.e 1290d $[1, 0, 1, -69, -224]$ $0$ $[2]$
1290.e4 1290d4 1290.e 1290d $[1, 0, 1, 341, -604]$ $0$ $[2]$
1290.f1 1290h1 1290.f 1290h $[1, 0, 1, 120229952, -3351306510322]$ $0$ trivial
1290.g1 1290f2 1290.g 1290f $[1, 0, 1, -238, -1384]$ $1$ $[2]$
1290.g2 1290f1 1290.g 1290f $[1, 0, 1, -38, 56]$ $1$ $[2]$
1290.h1 1290g4 1290.h 1290g $[1, 0, 1, -5183, -124342]$ $0$ $[2]$
1290.h2 1290g3 1290.h 1290g $[1, 0, 1, -4983, -135782]$ $0$ $[2]$
1290.h3 1290g2 1290.h 1290g $[1, 0, 1, -1358, 19118]$ $0$ $[6]$
1290.h4 1290g1 1290.h 1290g $[1, 0, 1, -108, 118]$ $0$ $[6]$
1290.i1 1290i2 1290.i 1290i $[1, 0, 1, -28, -52]$ $0$ $[2]$
1290.i2 1290i1 1290.i 1290i $[1, 0, 1, 2, -4]$ $0$ $[2]$
1290.j1 1290k2 1290.j 1290k $[1, 1, 1, -165776, -26048527]$ $0$ $[2]$
1290.j2 1290k1 1290.j 1290k $[1, 1, 1, -10256, -418831]$ $0$ $[2]$
1290.k1 1290j2 1290.k 1290j $[1, 1, 1, -1336, 18239]$ $0$ $[2]$
1290.k2 1290j1 1290.k 1290j $[1, 1, 1, -86, 239]$ $0$ $[2]$
1290.l1 1290l1 1290.l 1290l $[1, 1, 1, -45, 195]$ $1$ trivial
1290.m1 1290m1 1290.m 1290m $[1, 0, 0, -191, 921]$ $1$ $[2]$
1290.m2 1290m2 1290.m 1290m $[1, 0, 0, 209, 4361]$ $1$ $[2]$
1290.n1 1290n3 1290.n 1290n $[1, 0, 0, -34306, -1065280]$ $0$ $[2]$
1290.n2 1290n1 1290.n 1290n $[1, 0, 0, -17566, 894596]$ $0$ $[6]$
1290.n3 1290n2 1290.n 1290n $[1, 0, 0, -16566, 1001196]$ $0$ $[6]$
1290.n4 1290n4 1290.n 1290n $[1, 0, 0, 121944, -8034030]$ $0$ $[2]$
  Download to