Properties

Label 126400.e
Number of curves $1$
Conductor $126400$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 126400.e1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(79\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 126400.e do not have complex multiplication.

Modular form 126400.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{3} + 3 q^{7} + 6 q^{9} + 2 q^{11} - 5 q^{13} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 126400.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
126400.e1 126400ba1 \([0, 0, 0, -13900, 454000]\) \(72511713/20224\) \(82837504000000\) \([]\) \(663552\) \(1.3779\) \(\Gamma_0(N)\)-optimal