Properties

Label 123840.f
Number of curves $4$
Conductor $123840$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 123840.f have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(43\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 123840.f do not have complex multiplication.

Modular form 123840.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 4 q^{7} - 2 q^{13} - 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 123840.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
123840.f1 123840f4 \([0, 0, 0, -188745228, -998072486928]\) \(144118734029937784467/37867520\) \(195388085674967040\) \([2]\) \(10616832\) \(3.1297\)  
123840.f2 123840f3 \([0, 0, 0, -11798028, -15590853648]\) \(35198225176082067/18035507200\) \(93059255688914534400\) \([2]\) \(5308416\) \(2.7832\)  
123840.f3 123840f2 \([0, 0, 0, -2366028, -1324808848]\) \(206956783279200843/12642726098000\) \(89483799336321024000\) \([2]\) \(3538944\) \(2.5804\)  
123840.f4 123840f1 \([0, 0, 0, -446028, 89079152]\) \(1386456968640843/318028000000\) \(2250966564864000000\) \([2]\) \(1769472\) \(2.2339\) \(\Gamma_0(N)\)-optimal