Properties

Label 123840.dy
Number of curves $2$
Conductor $123840$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dy1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 123840.dy have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(43\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 123840.dy do not have complex multiplication.

Modular form 123840.2.a.dy

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 4 q^{7} + 2 q^{11} - 2 q^{13} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 123840.dy

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
123840.dy1 123840gd1 \([0, 0, 0, -12972, 557264]\) \(1263214441/29025\) \(5546763878400\) \([2]\) \(294912\) \(1.2317\) \(\Gamma_0(N)\)-optimal
123840.dy2 123840gd2 \([0, 0, 0, 1428, 1726544]\) \(1685159/6739605\) \(-1287958572564480\) \([2]\) \(589824\) \(1.5783\)