Properties

Label 116032.bb
Number of curves $1$
Conductor $116032$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 116032.bb1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 116032.bb do not have complex multiplication.

Modular form 116032.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 3 q^{9} + 3 q^{11} + 5 q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 116032.bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
116032.bb1 116032v1 \([0, 0, 0, -182, 1862]\) \(-30371328/50653\) \(-1111934656\) \([]\) \(27648\) \(0.42659\) \(\Gamma_0(N)\)-optimal