Properties

Label 10944.bd
Number of curves $4$
Conductor $10944$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 10944.bd have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 10944.bd do not have complex multiplication.

Modular form 10944.2.a.bd

Copy content sage:E.q_eigenform(10)
 
\(q - 4 q^{7} + 4 q^{13} - 6 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 10944.bd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10944.bd1 10944o3 \([0, 0, 0, -246540, 47116784]\) \(8671983378625/82308\) \(15729303748608\) \([2]\) \(55296\) \(1.6945\)  
10944.bd2 10944o4 \([0, 0, 0, -240780, 49423088]\) \(-8078253774625/846825858\) \(-161830941617553408\) \([2]\) \(110592\) \(2.0411\)  
10944.bd3 10944o1 \([0, 0, 0, -4620, -9232]\) \(57066625/32832\) \(6274292908032\) \([2]\) \(18432\) \(1.1452\) \(\Gamma_0(N)\)-optimal
10944.bd4 10944o2 \([0, 0, 0, 18420, -73744]\) \(3616805375/2105352\) \(-402339032727552\) \([2]\) \(36864\) \(1.4918\)