Properties

Label 107800.bk
Number of curves $4$
Conductor $107800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 107800.bk have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 107800.bk do not have complex multiplication.

Modular form 107800.2.a.bk

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{9} - q^{11} + 6 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 107800.bk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
107800.bk1 107800bn4 \([0, 0, 0, -9245075, 556774750]\) \(46424454082884/26794860125\) \(50438215981538000000000\) \([2]\) \(7962624\) \(3.0458\)  
107800.bk2 107800bn2 \([0, 0, 0, -6182575, -5895912750]\) \(55537159171536/228765625\) \(107656188062500000000\) \([2, 2]\) \(3981312\) \(2.6992\)  
107800.bk3 107800bn1 \([0, 0, 0, -6176450, -5908217875]\) \(885956203616256/15125\) \(444860281250000\) \([2]\) \(1990656\) \(2.3526\) \(\Gamma_0(N)\)-optimal
107800.bk4 107800bn3 \([0, 0, 0, -3218075, -11561072250]\) \(-1957960715364/29541015625\) \(-55607535156250000000000\) \([2]\) \(7962624\) \(3.0458\)