Show commands: SageMath
Rank
The elliptic curves in class 106470s have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 106470s do not have complex multiplication.Modular form 106470.2.a.s
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 106470s
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 106470.m4 | 106470s1 | \([1, -1, 0, -355185, -81279639]\) | \(1408317602329/2153060\) | \(7576066442058660\) | \([2]\) | \(1161216\) | \(1.9466\) | \(\Gamma_0(N)\)-optimal |
| 106470.m3 | 106470s2 | \([1, -1, 0, -461655, -28449225]\) | \(3092354182009/1689383150\) | \(5944506419001027150\) | \([2]\) | \(2322432\) | \(2.2932\) | |
| 106470.m2 | 106470s3 | \([1, -1, 0, -1442700, 587898000]\) | \(94376601570889/12235496000\) | \(43053575212740456000\) | \([2]\) | \(3483648\) | \(2.4959\) | |
| 106470.m1 | 106470s4 | \([1, -1, 0, -22310820, 40567042296]\) | \(349046010201856969/7245875000\) | \(25496377449235875000\) | \([2]\) | \(6967296\) | \(2.8425\) |