Learn more about

Refine search


Results (1-50 of 377 matches)

Next   Download to        
Curve Isogeny class
LMFDB label Cremona label LMFDB label Cremona label Weierstrass coefficients Rank Torsion structure
106470.a1 106470bn5 106470.a 106470bn $[1, -1, 0, -1296308025, 17964217463661]$ $0$ $[2]$
106470.a2 106470bn6 106470.a 106470bn $[1, -1, 0, -1245689145, 19431547433325]$ $0$ $[2]$
106470.a3 106470bn3 106470.a 106470bn $[1, -1, 0, -27771210, -16125914700]$ $0$ $[2]$
106470.a4 106470bn1 106470.a 106470bn $[1, -1, 0, -21816495, -39216122919]$ $0$ $[2]$
106470.a5 106470bn2 106470.a 106470bn $[1, -1, 0, -21618765, -39962000025]$ $0$ $[2]$
106470.a6 106470bn4 106470.a 106470bn $[1, -1, 0, 105894270, -126239537124]$ $0$ $[2]$
106470.b1 106470bl1 106470.b 106470bl $[1, -1, 0, -301950, -61188750]$ $0$ trivial
106470.c1 106470bk1 106470.c 106470bk $[1, -1, 0, -58590, -5444204]$ $0$ trivial
106470.d1 106470bi4 106470.d 106470bi $[1, -1, 0, -11929995, -15857201489]$ $2$ $[2]$
106470.d2 106470bi3 106470.d 106470bi $[1, -1, 0, -1739295, 534341731]$ $2$ $[2]$
106470.d3 106470bi2 106470.d 106470bi $[1, -1, 0, -750645, -244121279]$ $2$ $[2, 2]$
106470.d4 106470bi1 106470.d 106470bi $[1, -1, 0, 9855, -12472979]$ $2$ $[2]$
106470.e1 106470bc1 106470.e 106470bc $[1, -1, 0, -1686655125, -26661260409939]$ $0$ trivial
106470.f1 106470bb2 106470.f 106470bb $[1, -1, 0, -32136480, 77596517376]$ $0$ trivial
106470.f2 106470bb1 106470.f 106470bb $[1, -1, 0, 2565135, -253085715]$ $0$ trivial
106470.g1 106470d2 106470.g 106470d $[1, -1, 0, -207375, -36296389]$ $1$ trivial
106470.g2 106470d1 106470.g 106470d $[1, -1, 0, -2625, -46539]$ $1$ trivial
106470.h1 106470bd2 106470.h 106470bd $[1, -1, 0, -89010, 68172300]$ $0$ trivial
106470.h2 106470bd1 106470.h 106470bd $[1, -1, 0, 9855, -2476629]$ $0$ trivial
106470.i1 106470y1 106470.i 106470y $[1, -1, 0, -1566422415, 23562917106925]$ $0$ trivial
106470.j1 106470x1 106470.j 106470x $[1, -1, 0, 603045, -209329925]$ $0$ trivial
106470.k1 106470t4 106470.k 106470t $[1, -1, 0, -16333290, 25352448876]$ $0$ $[2]$
106470.k2 106470t2 106470.k 106470t $[1, -1, 0, -1427490, 51343956]$ $0$ $[2, 2]$
106470.k3 106470t1 106470.k 106470t $[1, -1, 0, -940770, -349615980]$ $0$ $[2]$
106470.k4 106470t3 106470.k 106470t $[1, -1, 0, 5690790, 405834300]$ $0$ $[2]$
106470.l1 106470a3 106470.l 106470a $[1, -1, 0, -159990, -24560704]$ $1$ $[2]$
106470.l2 106470a4 106470.l 106470a $[1, -1, 0, -114360, -38897650]$ $1$ $[2]$
106470.l3 106470a1 106470.l 106470a $[1, -1, 0, -7890, 238356]$ $1$ $[2]$
106470.l4 106470a2 106470.l 106470a $[1, -1, 0, 12390, 1248300]$ $1$ $[2]$
106470.m1 106470s4 106470.m 106470s $[1, -1, 0, -22310820, 40567042296]$ $0$ $[2]$
106470.m2 106470s3 106470.m 106470s $[1, -1, 0, -1442700, 587898000]$ $0$ $[2]$
106470.m3 106470s2 106470.m 106470s $[1, -1, 0, -461655, -28449225]$ $0$ $[2]$
106470.m4 106470s1 106470.m 106470s $[1, -1, 0, -355185, -81279639]$ $0$ $[2]$
106470.n1 106470v2 106470.n 106470v $[1, -1, 0, -9002070, 10398767796]$ $0$ trivial
106470.n2 106470v1 106470.n 106470v $[1, -1, 0, -5355, 39950145]$ $0$ trivial
106470.o1 106470u1 106470.o 106470u $[1, -1, 0, -89543700, -326115062064]$ $0$ trivial
106470.o2 106470u2 106470.o 106470u $[1, -1, 0, -89519715, -326298516075]$ $0$ trivial
106470.p1 106470w7 106470.p 106470w $[1, -1, 0, -3446097030, 77852403587700]$ $0$ $[2]$
106470.p2 106470w8 106470.p 106470w $[1, -1, 0, -1515765510, -22000772931084]$ $0$ $[2]$
106470.p3 106470w5 106470.p 106470w $[1, -1, 0, -1502509995, -22416452817615]$ $0$ $[2]$
106470.p4 106470w6 106470.p 106470w $[1, -1, 0, -238125510, 943852772916]$ $0$ $[2, 2]$
106470.p5 106470w4 106470.p 106470w $[1, -1, 0, -104589315, -265615756119]$ $0$ $[2]$
106470.p6 106470w2 106470.p 106470w $[1, -1, 0, -93911895, -350200141875]$ $0$ $[2, 2]$
106470.p7 106470w1 106470.p 106470w $[1, -1, 0, -5207175, -6753206979]$ $0$ $[2]$
106470.p8 106470w3 106470.p 106470w $[1, -1, 0, 42225210, 100613877300]$ $0$ $[2]$
106470.q1 106470b1 106470.q 106470b $[1, -1, 0, -204645, -35581675]$ $1$ trivial
106470.r1 106470z1 106470.r 106470z $[1, -1, 0, -114354135, -463775959139]$ $0$ $[2]$
106470.r2 106470z2 106470.r 106470z $[1, -1, 0, -5328855, -1311578341475]$ $0$ $[2]$
106470.s1 106470ba1 106470.s 106470ba $[1, -1, 0, -16374026655, 806470438773325]$ $0$ trivial
106470.t1 106470c2 106470.t 106470c $[1, -1, 0, -3795, -89335]$ $1$ trivial
Next   Download to