Show commands: SageMath
Rank
The elliptic curves in class 106470fe have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 106470fe do not have complex multiplication.Modular form 106470.2.a.fe
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 106470fe
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 106470.fd7 | 106470fe1 | \([1, -1, 1, -39127757, -93690555019]\) | \(1882742462388824401/11650189824000\) | \(40994032757665688064000\) | \([2]\) | \(12386304\) | \(3.1771\) | \(\Gamma_0(N)\)-optimal |
| 106470.fd6 | 106470fe2 | \([1, -1, 1, -62977037, 34036648949]\) | \(7850236389974007121/4400862921000000\) | \(15485508946284985881000000\) | \([2, 2]\) | \(24772608\) | \(3.5237\) | |
| 106470.fd5 | 106470fe3 | \([1, -1, 1, -241724957, 1383584710421]\) | \(443915739051786565201/21894701746029840\) | \(77041845167798306019828240\) | \([2]\) | \(37158912\) | \(3.7264\) | |
| 106470.fd8 | 106470fe4 | \([1, -1, 1, 247489483, 269867017541]\) | \(476437916651992691759/284661685546875000\) | \(-1001651530013810279296875000\) | \([2]\) | \(49545216\) | \(3.8703\) | |
| 106470.fd4 | 106470fe5 | \([1, -1, 1, -755032037, 7972461142949]\) | \(13527956825588849127121/25701087819771000\) | \(90435542416732298698731000\) | \([2]\) | \(49545216\) | \(3.8703\) | |
| 106470.fd2 | 106470fe6 | \([1, -1, 1, -3820607537, 90897164248349]\) | \(1752803993935029634719121/4599740941532100\) | \(16185309740232342656228100\) | \([2, 2]\) | \(74317824\) | \(4.0730\) | |
| 106470.fd3 | 106470fe7 | \([1, -1, 1, -3773654267, 93240113640041]\) | \(-1688971789881664420008241/89901485966373558750\) | \(-316340292848806015646929458750\) | \([2]\) | \(148635648\) | \(4.4196\) | |
| 106470.fd1 | 106470fe8 | \([1, -1, 1, -61129682087, 5817380358693089]\) | \(7179471593960193209684686321/49441793310\) | \(173973001742214038910\) | \([2]\) | \(148635648\) | \(4.4196\) |