Properties

Label 104040.a
Number of curves $4$
Conductor $104040$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 104040.a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 104040.a do not have complex multiplication.

Modular form 104040.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 4 q^{7} - 6 q^{13} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 104040.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
104040.a1 104040cl4 \([0, 0, 0, -562683, 162354998]\) \(546718898/405\) \(14595064953661440\) \([2]\) \(1310720\) \(2.0353\)  
104040.a2 104040cl3 \([0, 0, 0, -354603, -80307898]\) \(136835858/1875\) \(67569745155840000\) \([2]\) \(1310720\) \(2.0353\)  
104040.a3 104040cl2 \([0, 0, 0, -42483, 1405118]\) \(470596/225\) \(4054184709350400\) \([2, 2]\) \(655360\) \(1.6887\)  
104040.a4 104040cl1 \([0, 0, 0, 9537, 167042]\) \(21296/15\) \(-67569745155840\) \([2]\) \(327680\) \(1.3422\) \(\Gamma_0(N)\)-optimal