Properties

Label 101400dn
Number of curves $2$
Conductor $101400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 101400dn have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 101400dn do not have complex multiplication.

Modular form 101400.2.a.dn

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{7} + q^{9} + 4 q^{11} + 2 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 101400dn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
101400.dk1 101400dn1 \([0, 1, 0, -1455783, 601225938]\) \(621217777580032/74733890625\) \(41047589425781250000\) \([2]\) \(2709504\) \(2.4942\) \(\Gamma_0(N)\)-optimal
101400.dk2 101400dn2 \([0, 1, 0, 2098092, 3081830688]\) \(116227003261808/533935546875\) \(-4692225585937500000000\) \([2]\) \(5419008\) \(2.8407\)