Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
85.2-a1 85.2-a 5.5.24217.1 \( 5 \cdot 17 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $346.8383044$ 1.11438918 \( -\frac{62677552}{425} a^{4} + \frac{90221181}{425} a^{3} + \frac{148784492}{425} a^{2} - \frac{70726799}{425} a - \frac{76071034}{425} \) \( \bigl[2 a^{4} - a^{3} - 9 a^{2} + 4 a + 4\) , \( 3 a^{4} - 2 a^{3} - 14 a^{2} + 5 a + 7\) , \( 0\) , \( 2 a^{4} - a^{3} - 9 a^{2} + 3 a + 6\) , \( 0\bigr] \) ${y}^2+\left(2a^{4}-a^{3}-9a^{2}+4a+4\right){x}{y}={x}^{3}+\left(3a^{4}-2a^{3}-14a^{2}+5a+7\right){x}^{2}+\left(2a^{4}-a^{3}-9a^{2}+3a+6\right){x}$
85.2-a2 85.2-a 5.5.24217.1 \( 5 \cdot 17 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $346.8383044$ 1.11438918 \( \frac{332100987110154}{1445} a^{4} - \frac{641864431345097}{1445} a^{3} - \frac{405783721341489}{1445} a^{2} + \frac{419172695961983}{1445} a + \frac{181943957339298}{1445} \) \( \bigl[2 a^{4} - a^{3} - 9 a^{2} + 4 a + 4\) , \( 3 a^{4} - 2 a^{3} - 14 a^{2} + 5 a + 7\) , \( 0\) , \( -8 a^{4} + 4 a^{3} + 36 a^{2} - 12 a - 24\) , \( -34 a^{4} + 13 a^{3} + 154 a^{2} - 33 a - 90\bigr] \) ${y}^2+\left(2a^{4}-a^{3}-9a^{2}+4a+4\right){x}{y}={x}^{3}+\left(3a^{4}-2a^{3}-14a^{2}+5a+7\right){x}^{2}+\left(-8a^{4}+4a^{3}+36a^{2}-12a-24\right){x}-34a^{4}+13a^{3}+154a^{2}-33a-90$
85.2-b1 85.2-b 5.5.24217.1 \( 5 \cdot 17 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.007549410$ $16285.02719$ 1.97506496 \( -\frac{102640958}{425} a^{4} + \frac{58128349}{425} a^{3} + \frac{509229993}{425} a^{2} - \frac{171001971}{425} a - \frac{338930961}{425} \) \( \bigl[a^{4} - a^{3} - 4 a^{2} + 4 a + 2\) , \( -3 a^{4} + a^{3} + 14 a^{2} - 3 a - 6\) , \( a^{4} - a^{3} - 4 a^{2} + 4 a + 2\) , \( 5 a^{4} - 4 a^{3} - 23 a^{2} + 11 a + 7\) , \( 8 a^{4} - 5 a^{3} - 37 a^{2} + 14 a + 14\bigr] \) ${y}^2+\left(a^{4}-a^{3}-4a^{2}+4a+2\right){x}{y}+\left(a^{4}-a^{3}-4a^{2}+4a+2\right){y}={x}^{3}+\left(-3a^{4}+a^{3}+14a^{2}-3a-6\right){x}^{2}+\left(5a^{4}-4a^{3}-23a^{2}+11a+7\right){x}+8a^{4}-5a^{3}-37a^{2}+14a+14$
85.2-b2 85.2-b 5.5.24217.1 \( 5 \cdot 17 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.015098821$ $8142.513599$ 1.97506496 \( \frac{185066934807448}{1445} a^{4} - \frac{87464764407119}{1445} a^{3} - \frac{909727616081443}{1445} a^{2} + \frac{231799410298786}{1445} a + \frac{559295724774971}{1445} \) \( \bigl[a^{4} - a^{3} - 4 a^{2} + 4 a + 2\) , \( -3 a^{4} + a^{3} + 14 a^{2} - 3 a - 6\) , \( a^{4} - a^{3} - 4 a^{2} + 4 a + 2\) , \( -50 a^{4} + 26 a^{3} + 232 a^{2} - 74 a - 103\) , \( 65 a^{4} - 10 a^{3} - 330 a^{2} - 4 a + 225\bigr] \) ${y}^2+\left(a^{4}-a^{3}-4a^{2}+4a+2\right){x}{y}+\left(a^{4}-a^{3}-4a^{2}+4a+2\right){y}={x}^{3}+\left(-3a^{4}+a^{3}+14a^{2}-3a-6\right){x}^{2}+\left(-50a^{4}+26a^{3}+232a^{2}-74a-103\right){x}+65a^{4}-10a^{3}-330a^{2}-4a+225$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.