Properties

Label 5.5.24217.1-85.2-b2
Base field 5.5.24217.1
Conductor norm \( 85 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-a^{3}-4a^{2}+4a+2\right){x}{y}+\left(a^{4}-a^{3}-4a^{2}+4a+2\right){y}={x}^{3}+\left(-3a^{4}+a^{3}+14a^{2}-3a-6\right){x}^{2}+\left(-50a^{4}+26a^{3}+232a^{2}-74a-103\right){x}+65a^{4}-10a^{3}-330a^{2}-4a+225\)
sage: E = EllipticCurve([K([2,4,-4,-1,1]),K([-6,-3,14,1,-3]),K([2,4,-4,-1,1]),K([-103,-74,232,26,-50]),K([225,-4,-330,-10,65])])
 
gp: E = ellinit([Polrev([2,4,-4,-1,1]),Polrev([-6,-3,14,1,-3]),Polrev([2,4,-4,-1,1]),Polrev([-103,-74,232,26,-50]),Polrev([225,-4,-330,-10,65])], K);
 
magma: E := EllipticCurve([K![2,4,-4,-1,1],K![-6,-3,14,1,-3],K![2,4,-4,-1,1],K![-103,-74,232,26,-50],K![225,-4,-330,-10,65]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-5a^2-2a+3)\) = \((2a^4-a^3-9a^2+2a+3)\cdot(a^2-a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 85 \) = \(5\cdot17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-6a^4+3a^3+26a^2-7a-8)\) = \((2a^4-a^3-9a^2+2a+3)\cdot(a^2-a-3)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -1445 \) = \(-5\cdot17^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{185066934807448}{1445} a^{4} - \frac{87464764407119}{1445} a^{3} - \frac{909727616081443}{1445} a^{2} + \frac{231799410298786}{1445} a + \frac{559295724774971}{1445} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-22 a^{4} + 17 a^{3} + 98 a^{2} - 54 a - 27 : 157 a^{4} - 114 a^{3} - 703 a^{2} + 351 a + 217 : 1\right)$
Height \(0.015098821599520145625866987257809168425\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{15}{4} a^{4} - \frac{3}{2} a^{3} - \frac{71}{4} a^{2} + \frac{15}{4} a + \frac{35}{4} : \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{13}{8} a^{2} + \frac{1}{2} a + \frac{1}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.015098821599520145625866987257809168425 \)
Period: \( 8142.5135995202362044011302905957081506 \)
Tamagawa product: \( 2 \)  =  \(1\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 1.97506496 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^4-a^3-9a^2+2a+3)\) \(5\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((a^2-a-3)\) \(17\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 85.2-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.