Properties

Label 5.5.24217.1-85.2-b1
Base field 5.5.24217.1
Conductor norm \( 85 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-a^{3}-4a^{2}+4a+2\right){x}{y}+\left(a^{4}-a^{3}-4a^{2}+4a+2\right){y}={x}^{3}+\left(-3a^{4}+a^{3}+14a^{2}-3a-6\right){x}^{2}+\left(5a^{4}-4a^{3}-23a^{2}+11a+7\right){x}+8a^{4}-5a^{3}-37a^{2}+14a+14\)
sage: E = EllipticCurve([K([2,4,-4,-1,1]),K([-6,-3,14,1,-3]),K([2,4,-4,-1,1]),K([7,11,-23,-4,5]),K([14,14,-37,-5,8])])
 
gp: E = ellinit([Polrev([2,4,-4,-1,1]),Polrev([-6,-3,14,1,-3]),Polrev([2,4,-4,-1,1]),Polrev([7,11,-23,-4,5]),Polrev([14,14,-37,-5,8])], K);
 
magma: E := EllipticCurve([K![2,4,-4,-1,1],K![-6,-3,14,1,-3],K![2,4,-4,-1,1],K![7,11,-23,-4,5],K![14,14,-37,-5,8]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-5a^2-2a+3)\) = \((2a^4-a^3-9a^2+2a+3)\cdot(a^2-a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 85 \) = \(5\cdot17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^4+3a^3+18a^2-9a-9)\) = \((2a^4-a^3-9a^2+2a+3)^{2}\cdot(a^2-a-3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 425 \) = \(5^{2}\cdot17\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{102640958}{425} a^{4} + \frac{58128349}{425} a^{3} + \frac{509229993}{425} a^{2} - \frac{171001971}{425} a - \frac{338930961}{425} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(2 a^{4} - a^{3} - 9 a^{2} + 2 a + 4 : a^{4} - a^{3} - 4 a^{2} + 2 a + 1 : 1\right)$
Height \(0.0075494107997600728129334936289045842133\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-1 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0075494107997600728129334936289045842133 \)
Period: \( 16285.027199040472408802260581191416301 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.97506496 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^4-a^3-9a^2+2a+3)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a^2-a-3)\) \(17\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 85.2-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.