Base field 5.5.24217.1
Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([2,4,-4,-1,1]),K([-6,-3,14,1,-3]),K([2,4,-4,-1,1]),K([7,11,-23,-4,5]),K([14,14,-37,-5,8])])
gp: E = ellinit([Polrev([2,4,-4,-1,1]),Polrev([-6,-3,14,1,-3]),Polrev([2,4,-4,-1,1]),Polrev([7,11,-23,-4,5]),Polrev([14,14,-37,-5,8])], K);
magma: E := EllipticCurve([K![2,4,-4,-1,1],K![-6,-3,14,1,-3],K![2,4,-4,-1,1],K![7,11,-23,-4,5],K![14,14,-37,-5,8]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((a^4-5a^2-2a+3)\) | = | \((2a^4-a^3-9a^2+2a+3)\cdot(a^2-a-3)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 85 \) | = | \(5\cdot17\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-4a^4+3a^3+18a^2-9a-9)\) | = | \((2a^4-a^3-9a^2+2a+3)^{2}\cdot(a^2-a-3)\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 425 \) | = | \(5^{2}\cdot17\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( -\frac{102640958}{425} a^{4} + \frac{58128349}{425} a^{3} + \frac{509229993}{425} a^{2} - \frac{171001971}{425} a - \frac{338930961}{425} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(2 a^{4} - a^{3} - 9 a^{2} + 2 a + 4 : a^{4} - a^{3} - 4 a^{2} + 2 a + 1 : 1\right)$ |
Height | \(0.0075494107997600728129334936289045842133\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(-1 : 0 : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 0.0075494107997600728129334936289045842133 \) | ||
Period: | \( 16285.027199040472408802260581191416301 \) | ||
Tamagawa product: | \( 2 \) = \(2\cdot1\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 1.97506496 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((2a^4-a^3-9a^2+2a+3)\) | \(5\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
\((a^2-a-3)\) | \(17\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class
85.2-b
consists of curves linked by isogenies of
degree 2.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.