Properties

Label 2.2.8.1-686.2-c2
Base field \(\Q(\sqrt{2}) \)
Conductor norm \( 686 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{2}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 2 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([-2, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,0]),K([0,-1]),K([1,1]),K([0,0]),K([0,0])])
 
Copy content gp:E = ellinit([Polrev([1,0]),Polrev([0,-1]),Polrev([1,1]),Polrev([0,0]),Polrev([0,0])], K);
 
Copy content magma:E := EllipticCurve([K![1,0],K![0,-1],K![1,1],K![0,0],K![0,0]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(a + 1 : -2 a - 3 : 1\right)$$0.041738732556993241251669775068743264720$$\infty$

Invariants

Conductor: $\frak{N}$ = \((7a-28)\) = \((a)\cdot(-2a+1)^{2}\cdot(2a+1)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 686 \) = \(2\cdot7^{2}\cdot7\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-112a+56$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-112a+56)\) = \((a)^{6}\cdot(-2a+1)^{2}\cdot(2a+1)\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 21952 \) = \(2^{6}\cdot7^{2}\cdot7\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{208183}{56} a - \frac{292563}{56} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.041738732556993241251669775068743264720 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 0.08347746511398648250333955013748652944000 \)
Global period: $\Omega(E/K)$ \( 24.657576544692074795859135441400229579 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 2 \)  =  \(2\cdot1\cdot1\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.4554746472315004163399153291966549813 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}1.455474647 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 24.657577 \cdot 0.083477 \cdot 2 } { {1^2 \cdot 2.828427} } \\ & \approx 1.455474647 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a)\) \(2\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((-2a+1)\) \(7\) \(1\) \(II\) Additive \(-1\) \(2\) \(2\) \(0\)
\((2a+1)\) \(7\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 686.2-c consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.