Base field \(\Q(\sqrt{2}) \)
Generator \(w\), with minimal polynomial \(x^{2} - 2\); narrow class number \(1\) and class number \(1\).
Form
Weight: | $[2, 2]$ |
Level: | $[686, 98, 7w + 28]$ |
Dimension: | $1$ |
CM: | no |
Base change: | no |
Newspace dimension: | $11$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, -w]$ | $-1$ |
7 | $[7, 7, -2w + 1]$ | $-1$ |
7 | $[7, 7, -2w - 1]$ | $\phantom{-}0$ |
9 | $[9, 3, 3]$ | $-1$ |
17 | $[17, 17, 3w + 1]$ | $-6$ |
17 | $[17, 17, 3w - 1]$ | $\phantom{-}3$ |
23 | $[23, 23, w + 5]$ | $-9$ |
23 | $[23, 23, -w + 5]$ | $-6$ |
25 | $[25, 5, 5]$ | $-2$ |
31 | $[31, 31, 4w + 1]$ | $-5$ |
31 | $[31, 31, -4w + 1]$ | $-7$ |
41 | $[41, 41, 2w - 7]$ | $\phantom{-}0$ |
41 | $[41, 41, -2w - 7]$ | $-3$ |
47 | $[47, 47, -w - 7]$ | $-3$ |
47 | $[47, 47, w - 7]$ | $\phantom{-}12$ |
71 | $[71, 71, -6w - 1]$ | $\phantom{-}3$ |
71 | $[71, 71, 6w - 1]$ | $\phantom{-}6$ |
73 | $[73, 73, -7w - 5]$ | $\phantom{-}16$ |
73 | $[73, 73, 7w - 5]$ | $\phantom{-}2$ |
79 | $[79, 79, -w - 9]$ | $-2$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$2$ | $[2, 2, -w]$ | $1$ |
$7$ | $[7, 7, -2w + 1]$ | $1$ |
$7$ | $[7, 7, -2w - 1]$ | $-1$ |