Properties

Label 2.2.56.1-56.1-d1
Base field Q(14)\Q(\sqrt{14})
Conductor norm 56 56
CM no
Base change no
Q-curve yes
Torsion order 2 2
Rank 2 2

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(14)\Q(\sqrt{14})

Generator aa, with minimal polynomial x214 x^{2} - 14 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, 0, 1]))
 
gp: K = nfinit(Polrev([-14, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, 0, 1]);
 

Weierstrass equation

y2+axy+ay=x3+x2+(150a635)x+2318a9041{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(150a-635\right){x}+2318a-9041
sage: E = EllipticCurve([K([0,1]),K([1,0]),K([0,1]),K([-635,150]),K([-9041,2318])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,0]),Polrev([0,1]),Polrev([-635,150]),Polrev([-9041,2318])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,0],K![0,1],K![-635,150],K![-9041,2318]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZZ/2Z\Z \oplus \Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(195984225a69471690:46303811098500a29693197549250:1)\left(\frac{19598}{4225} a - \frac{6947}{1690} : -\frac{4630381}{1098500} a - \frac{29693197}{549250} : 1\right)5.92213515939709269787911838754313401535.9221351593970926978791183875431340153\infty
(1563378450a+80713316900:1620307671098500a+11284050532197000:1)\left(\frac{156337}{8450} a + \frac{807133}{16900} : \frac{162030767}{1098500} a + \frac{1128405053}{2197000} : 1\right)5.92213515939709269787911838754313404065.9221351593970926978791183875431340406\infty
(4a132:114a28:1)\left(4 a - \frac{13}{2} : \frac{11}{4} a - 28 : 1\right)0022

Invariants

Conductor: N\frak{N} = (2a)(2a) = (a+4)3(2a+7)(-a+4)^{3}\cdot(-2a+7)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 56 56 = 2372^{3}\cdot7
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 32a32a
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (32a)(32a) = (a+4)11(2a+7)(-a+4)^{11}\cdot(-2a+7)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 14336 -14336 = 2117-2^{11}\cdot7
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 397758493620768157a+21261085797246696 -\frac{39775849362076815}{7} a + 21261085797246696
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 2 2
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 22
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 32.363353551208464212080134907405718051 32.363353551208464212080134907405718051
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 129.45341420483385684832053962962287220 129.45341420483385684832053962962287220
Global period: Ω(E/K)\Omega(E/K) 0.65907338218172640606237416363638825668 0.65907338218172640606237416363638825668
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 1 1  =  111\cdot1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 2.8503177441011686065450864444986300260 2.8503177441011686065450864444986300260
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

2.850317744L(2)(E/K,1)/2!=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/210.659073129.4534141227.4833152.850317744\displaystyle 2.850317744 \approx L^{(2)}(E/K,1)/2! \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 0.659073 \cdot 129.453414 \cdot 1 } { {2^2 \cdot 7.483315} } \approx 2.850317744

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(a+4)(-a+4) 22 11 IIII^{*} Additive 1-1 33 1111 00
(2a+7)(-2a+7) 77 11 I1I_{1} Split multiplicative 1-1 11 11 11

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4 and 8.
Its isogeny class 56.1-d consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.