Learn more

Refine search


Results (1-50 of 1200 matches)

Next   Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1.1-a1 1.1-a \(\Q(\sqrt{14}) \) \( 1 \) $0$ $\Z/2\Z$ $-7$ $1$ $26.16385905$ 0.874073183 \( -3375 \) \( \bigl[a + 1\) , \( a\) , \( 1\) , \( 2 a + 10\) , \( 2 a + 7\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+a{x}^{2}+\left(2a+10\right){x}+2a+7$
1.1-a2 1.1-a \(\Q(\sqrt{14}) \) \( 1 \) $0$ $\Z/2\Z$ $-7$ $1$ $26.16385905$ 0.874073183 \( -3375 \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 4 a + 3\) , \( a + 21\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(4a+3\right){x}+a+21$
1.1-a3 1.1-a \(\Q(\sqrt{14}) \) \( 1 \) $0$ $\Z/2\Z$ $-28$ $1$ $26.16385905$ 0.874073183 \( 16581375 \) \( \bigl[a + 1\) , \( a\) , \( 1\) , \( -18 a - 65\) , \( 41 a + 153\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-18a-65\right){x}+41a+153$
1.1-a4 1.1-a \(\Q(\sqrt{14}) \) \( 1 \) $0$ $\Z/2\Z$ $-28$ $1$ $26.16385905$ 0.874073183 \( 16581375 \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 24 a - 72\) , \( -113 a + 447\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(24a-72\right){x}-113a+447$
5.1-a1 5.1-a \(\Q(\sqrt{14}) \) \( 5 \) $0$ $\mathsf{trivial}$ $1$ $11.70663218$ 1.564364528 \( \frac{534684321}{1953125} a + \frac{3601913643}{1953125} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -15 a - 54\) , \( -33 a - 127\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-15a-54\right){x}-33a-127$
5.1-b1 5.1-b \(\Q(\sqrt{14}) \) \( 5 \) $1$ $\mathsf{trivial}$ $0.053182667$ $11.35679518$ 1.452795207 \( \frac{534684321}{1953125} a + \frac{3601913643}{1953125} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -8 a + 30\) , \( 27 a - 101\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-8a+30\right){x}+27a-101$
5.2-a1 5.2-a \(\Q(\sqrt{14}) \) \( 5 \) $0$ $\mathsf{trivial}$ $1$ $11.70663218$ 1.564364528 \( -\frac{534684321}{1953125} a + \frac{3601913643}{1953125} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 14 a - 54\) , \( 33 a - 127\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(14a-54\right){x}+33a-127$
5.2-b1 5.2-b \(\Q(\sqrt{14}) \) \( 5 \) $1$ $\mathsf{trivial}$ $0.053182667$ $11.35679518$ 1.452795207 \( -\frac{534684321}{1953125} a + \frac{3601913643}{1953125} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 8 a + 30\) , \( -27 a - 101\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(8a+30\right){x}-27a-101$
10.1-a1 10.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 5 \) $0$ $\Z/3\Z$ $1$ $36.43104508$ 1.081845150 \( \frac{5689}{20} a + \frac{21627}{20} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -2 a + 7\) , \( -30 a + 112\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-2a+7\right){x}-30a+112$
10.1-a2 10.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $4.047893897$ 1.081845150 \( \frac{18258829169}{8000} a + \frac{68318145777}{8000} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 18 a - 68\) , \( 814 a - 3046\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(18a-68\right){x}+814a-3046$
10.1-b1 10.1-b \(\Q(\sqrt{14}) \) \( 2 \cdot 5 \) $0$ $\Z/5\Z$ $1$ $8.284026412$ 2.213999186 \( \frac{73603923}{100000} a + \frac{358833109}{100000} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -27 a - 102\) , \( -216 a - 811\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-27a-102\right){x}-216a-811$
10.1-b2 10.1-b \(\Q(\sqrt{14}) \) \( 2 \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $0.331361056$ 2.213999186 \( \frac{7114676554418062503}{10} a + \frac{26620682081199569989}{10} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -17217 a - 64432\) , \( -2427316 a - 9082191\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-17217a-64432\right){x}-2427316a-9082191$
10.1-c1 10.1-c \(\Q(\sqrt{14}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $0.054400494$ $14.16313473$ 2.059198521 \( \frac{73603923}{100000} a + \frac{358833109}{100000} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -5 a + 29\) , \( -20 a + 81\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-5a+29\right){x}-20a+81$
10.1-c2 10.1-c \(\Q(\sqrt{14}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $0.272002473$ $14.16313473$ 2.059198521 \( \frac{7114676554418062503}{10} a + \frac{26620682081199569989}{10} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 1285 a - 4941\) , \( -48650 a + 182431\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(1285a-4941\right){x}-48650a+182431$
10.1-d1 10.1-d \(\Q(\sqrt{14}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $0.115049867$ $20.19548844$ 1.241956719 \( \frac{5689}{20} a + \frac{21627}{20} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( 3\) , \( 1\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+3{x}+1$
10.1-d2 10.1-d \(\Q(\sqrt{14}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $0.038349955$ $20.19548844$ 1.241956719 \( \frac{18258829169}{8000} a + \frac{68318145777}{8000} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -20 a - 72\) , \( 128 a + 480\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-20a-72\right){x}+128a+480$
10.2-a1 10.2-a \(\Q(\sqrt{14}) \) \( 2 \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $4.047893897$ 1.081845150 \( -\frac{18258829169}{8000} a + \frac{68318145777}{8000} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -18 a - 68\) , \( -814 a - 3046\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-18a-68\right){x}-814a-3046$
10.2-a2 10.2-a \(\Q(\sqrt{14}) \) \( 2 \cdot 5 \) $0$ $\Z/3\Z$ $1$ $36.43104508$ 1.081845150 \( -\frac{5689}{20} a + \frac{21627}{20} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 2 a + 7\) , \( 30 a + 112\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(2a+7\right){x}+30a+112$
10.2-b1 10.2-b \(\Q(\sqrt{14}) \) \( 2 \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $0.331361056$ 2.213999186 \( -\frac{7114676554418062503}{10} a + \frac{26620682081199569989}{10} \) \( \bigl[a + 1\) , \( a - 1\) , \( 1\) , \( 17221 a - 64425\) , \( 2362884 a - 8841125\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(17221a-64425\right){x}+2362884a-8841125$
10.2-b2 10.2-b \(\Q(\sqrt{14}) \) \( 2 \cdot 5 \) $0$ $\Z/5\Z$ $1$ $8.284026412$ 2.213999186 \( -\frac{73603923}{100000} a + \frac{358833109}{100000} \) \( \bigl[a + 1\) , \( a - 1\) , \( 1\) , \( 31 a - 95\) , \( 114 a - 405\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(31a-95\right){x}+114a-405$
10.2-c1 10.2-c \(\Q(\sqrt{14}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $0.272002473$ $14.16313473$ 2.059198521 \( -\frac{7114676554418062503}{10} a + \frac{26620682081199569989}{10} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -1285 a - 4941\) , \( 48650 a + 182431\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-1285a-4941\right){x}+48650a+182431$
10.2-c2 10.2-c \(\Q(\sqrt{14}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $0.054400494$ $14.16313473$ 2.059198521 \( -\frac{73603923}{100000} a + \frac{358833109}{100000} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 5 a + 29\) , \( 20 a + 81\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(5a+29\right){x}+20a+81$
10.2-d1 10.2-d \(\Q(\sqrt{14}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $0.038349955$ $20.19548844$ 1.241956719 \( -\frac{18258829169}{8000} a + \frac{68318145777}{8000} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 20 a - 72\) , \( -128 a + 480\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(20a-72\right){x}-128a+480$
10.2-d2 10.2-d \(\Q(\sqrt{14}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $0.115049867$ $20.19548844$ 1.241956719 \( -\frac{5689}{20} a + \frac{21627}{20} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 3\) , \( 1\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+3{x}+1$
14.1-a1 14.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 7 \) $1$ $\Z/2\Z$ $12.63051067$ $0.436190660$ 1.472425245 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -171\) , \( -874\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-171{x}-874$
14.1-a2 14.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 7 \) $1$ $\Z/6\Z$ $1.403390075$ $35.33144352$ 1.472425245 \( -\frac{15625}{28} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -1\) , \( 0\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}$
14.1-a3 14.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 7 \) $1$ $\Z/6\Z$ $4.210170225$ $3.925715946$ 1.472425245 \( \frac{9938375}{21952} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 4\) , \( -6\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+4{x}-6$
14.1-a4 14.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 7 \) $1$ $\Z/6\Z$ $2.105085112$ $3.925715946$ 1.472425245 \( \frac{4956477625}{941192} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -36\) , \( -70\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-36{x}-70$
14.1-a5 14.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 7 \) $1$ $\Z/6\Z$ $0.701695037$ $35.33144352$ 1.472425245 \( \frac{128787625}{98} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -11\) , \( 12\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-11{x}+12$
14.1-a6 14.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 7 \) $1$ $\Z/2\Z$ $6.315255337$ $0.436190660$ 1.472425245 \( \frac{2251439055699625}{25088} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -2731\) , \( -55146\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-2731{x}-55146$
14.1-b1 14.1-b \(\Q(\sqrt{14}) \) \( 2 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $7.027708105$ 0.939116998 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 20462 a - 76559\) , \( -3121544 a + 11679749\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(20462a-76559\right){x}-3121544a+11679749$
14.1-b2 14.1-b \(\Q(\sqrt{14}) \) \( 2 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $7.027708105$ 0.939116998 \( -\frac{15625}{28} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 62 a - 229\) , \( 960 a - 3591\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(62a-229\right){x}+960a-3591$
14.1-b3 14.1-b \(\Q(\sqrt{14}) \) \( 2 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $7.027708105$ 0.939116998 \( \frac{9938375}{21952} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( -538 a + 2016\) , \( -21216 a + 79384\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-538a+2016\right){x}-21216a+79384$
14.1-b4 14.1-b \(\Q(\sqrt{14}) \) \( 2 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $7.027708105$ 0.939116998 \( \frac{4956477625}{941192} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 4262 a - 15944\) , \( -246560 a + 922544\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(4262a-15944\right){x}-246560a+922544$
14.1-b5 14.1-b \(\Q(\sqrt{14}) \) \( 2 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $7.027708105$ 0.939116998 \( \frac{128787625}{98} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 1262 a - 4719\) , \( 45312 a - 169541\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1262a-4719\right){x}+45312a-169541$
14.1-b6 14.1-b \(\Q(\sqrt{14}) \) \( 2 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $7.027708105$ 0.939116998 \( \frac{2251439055699625}{25088} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 327662 a - 1225999\) , \( -197976456 a + 740760069\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(327662a-1225999\right){x}-197976456a+740760069$
16.1-a1 16.1-a \(\Q(\sqrt{14}) \) \( 2^{4} \) $0$ $\Z/2\Z$ $-7$ $1$ $13.08192952$ 1.748146366 \( -3375 \) \( \bigl[a\) , \( 1\) , \( a\) , \( -5 a - 19\) , \( 7 a + 26\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-5a-19\right){x}+7a+26$
16.1-a2 16.1-a \(\Q(\sqrt{14}) \) \( 2^{4} \) $0$ $\Z/2\Z$ $-7$ $1$ $13.08192952$ 1.748146366 \( -3375 \) \( \bigl[a\) , \( 1\) , \( a\) , \( 5 a - 19\) , \( -7 a + 26\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(5a-19\right){x}-7a+26$
16.1-a3 16.1-a \(\Q(\sqrt{14}) \) \( 2^{4} \) $0$ $\Z/2\Z$ $-28$ $1$ $13.08192952$ 1.748146366 \( 16581375 \) \( \bigl[a\) , \( 1\) , \( a\) , \( -85 a - 319\) , \( 699 a + 2614\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-85a-319\right){x}+699a+2614$
16.1-a4 16.1-a \(\Q(\sqrt{14}) \) \( 2^{4} \) $0$ $\Z/2\Z$ $-28$ $1$ $13.08192952$ 1.748146366 \( 16581375 \) \( \bigl[a\) , \( 1\) , \( a\) , \( 85 a - 319\) , \( -699 a + 2614\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(85a-319\right){x}-699a+2614$
18.1-a1 18.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $8.501880177$ 1.136111527 \( \frac{4913}{1296} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a\) , \( 2\) , \( -38 a - 142\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+2{x}-38a-142$
18.1-a2 18.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $8.501880177$ 1.136111527 \( \frac{838561807}{26244} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a\) , \( -80 a - 298\) , \( -738 a - 2762\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-80a-298\right){x}-738a-2762$
18.1-b1 18.1-b \(\Q(\sqrt{14}) \) \( 2 \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $8.501880177$ 1.136111527 \( \frac{4913}{1296} \) \( \bigl[a + 1\) , \( -1\) , \( a\) , \( -a + 2\) , \( 38 a - 142\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-a+2\right){x}+38a-142$
18.1-b2 18.1-b \(\Q(\sqrt{14}) \) \( 2 \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $8.501880177$ 1.136111527 \( \frac{838561807}{26244} \) \( \bigl[a + 1\) , \( -1\) , \( a\) , \( 79 a - 298\) , \( 738 a - 2762\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(79a-298\right){x}+738a-2762$
20.1-a1 20.1-a \(\Q(\sqrt{14}) \) \( 2^{2} \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $13.92592824$ 1.860930439 \( \frac{3236}{5} a + \frac{12108}{5} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -13 a - 26\) , \( -32 a - 99\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-13a-26\right){x}-32a-99$
20.1-b1 20.1-b \(\Q(\sqrt{14}) \) \( 2^{2} \cdot 5 \) $1$ $\mathsf{trivial}$ $0.223019342$ $31.97666518$ 1.905950784 \( \frac{3236}{5} a + \frac{12108}{5} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 2\) , \( -2 a + 8\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+2{x}-2a+8$
20.2-a1 20.2-a \(\Q(\sqrt{14}) \) \( 2^{2} \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $13.92592824$ 1.860930439 \( -\frac{3236}{5} a + \frac{12108}{5} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( 13 a - 26\) , \( 32 a - 99\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(13a-26\right){x}+32a-99$
20.2-b1 20.2-b \(\Q(\sqrt{14}) \) \( 2^{2} \cdot 5 \) $1$ $\mathsf{trivial}$ $0.223019342$ $31.97666518$ 1.905950784 \( -\frac{3236}{5} a + \frac{12108}{5} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 2\) , \( 2 a + 8\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+2{x}+2a+8$
22.1-a1 22.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 11 \) $1$ $\Z/2\Z$ $0.350694013$ $18.00713737$ 1.687753482 \( \frac{69372345}{242} a - \frac{519137881}{484} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -28 a - 98\) , \( -2405 a - 8994\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-28a-98\right){x}-2405a-8994$
22.1-a2 22.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 11 \) $1$ $\Z/2\Z$ $0.701388027$ $18.00713737$ 1.687753482 \( -\frac{13538239447075}{22} a + \frac{50655455887741}{22} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -1538 a - 5748\) , \( -63797 a - 238702\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-1538a-5748\right){x}-63797a-238702$
Next   Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.