Base field \(\Q(\sqrt{14}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 14 \); class number \(1\).
Elliptic curves in class 56.1-d over \(\Q(\sqrt{14}) \)
Isogeny class 56.1-d contains 6 curves linked by isogenies of degrees dividing 8.
Rank
Rank: \( 2 \)Isogeny matrix
\(\left(\begin{array}{rrrrrr} 1 & 8 & 8 & 4 & 2 & 4 \\ 8 & 1 & 4 & 2 & 4 & 8 \\ 8 & 4 & 1 & 2 & 4 & 8 \\ 4 & 2 & 2 & 1 & 2 & 4 \\ 2 & 4 & 4 & 2 & 1 & 2 \\ 4 & 8 & 8 & 4 & 2 & 1 \end{array}\right)\)