Base field \(\Q(\sqrt{14}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 14 \); class number \(1\).
Elliptic curves in class 56.1-c over \(\Q(\sqrt{14}) \)
Isogeny class 56.1-c contains 2 curves linked by isogenies of degree 2.
Rank
Rank: \( 1 \)Isogeny matrix
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)