Properties

Label 4-56e3-1.1-c1e2-0-10
Degree $4$
Conductor $175616$
Sign $-1$
Analytic cond. $11.1974$
Root an. cond. $1.82927$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·5-s + 7-s − 2·9-s + 38·25-s + 8·31-s − 8·35-s + 16·43-s + 16·45-s − 8·47-s + 49-s + 8·61-s − 2·63-s − 24·67-s − 5·81-s + 24·101-s − 24·103-s − 24·107-s + 12·113-s − 22·121-s − 136·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 64·155-s + ⋯
L(s)  = 1  − 3.57·5-s + 0.377·7-s − 2/3·9-s + 38/5·25-s + 1.43·31-s − 1.35·35-s + 2.43·43-s + 2.38·45-s − 1.16·47-s + 1/7·49-s + 1.02·61-s − 0.251·63-s − 2.93·67-s − 5/9·81-s + 2.38·101-s − 2.36·103-s − 2.32·107-s + 1.12·113-s − 2·121-s − 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 5.14·155-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175616 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175616 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(175616\)    =    \(2^{9} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(11.1974\)
Root analytic conductor: \(1.82927\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 175616,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( 1 - T \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.928329697232844766585907221767, −8.188057214509100026281306554311, −7.983821232000002036742511485775, −7.72782003802833126145569309094, −7.14438434722230698367292292955, −6.78907197794275632795066073083, −6.02020417555534802053969461502, −5.24725702689372953190086654330, −4.50185552371175935345657331179, −4.34927860692831690306580619795, −3.81394948833072648510784180802, −3.14137792992390816749783057891, −2.73255899043208384705811500747, −0.980550638938267372961223820619, 0, 0.980550638938267372961223820619, 2.73255899043208384705811500747, 3.14137792992390816749783057891, 3.81394948833072648510784180802, 4.34927860692831690306580619795, 4.50185552371175935345657331179, 5.24725702689372953190086654330, 6.02020417555534802053969461502, 6.78907197794275632795066073083, 7.14438434722230698367292292955, 7.72782003802833126145569309094, 7.983821232000002036742511485775, 8.188057214509100026281306554311, 8.928329697232844766585907221767

Graph of the $Z$-function along the critical line