Learn more

Refine search


Results (1-50 of 84 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1280.1-a1 1280.1-a Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.4984444901.498444490 1.340249496 15655637178893165a+25331353070763785 -\frac{1565563717889316}{5} a + \frac{2533135307076378}{5} [0 \bigl[0 , 0 0 , 0 0 , 173ϕ547 173 \phi - 547 , 3764ϕ4110] 3764 \phi - 4110\bigr] y2=x3+(173ϕ547)x+3764ϕ4110{y}^2={x}^{3}+\left(173\phi-547\right){x}+3764\phi-4110
1280.1-a2 1280.1-a Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.9875559211.98755592 1.340249496 2370358085a+3835326245 -\frac{237035808}{5} a + \frac{383532624}{5} [0 \bigl[0 , 0 0 , 0 0 , 8ϕ7 8 \phi - 7 , 16ϕ+6] -16 \phi + 6\bigr] y2=x3+(8ϕ7)x16ϕ+6{y}^2={x}^{3}+\left(8\phi-7\right){x}-16\phi+6
1280.1-a3 1280.1-a Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.9968889812.996888981 1.340249496 237276625 \frac{237276}{625} [0 \bigl[0 , 0 0 , 0 0 , 13ϕ+13 13 \phi + 13 , 68ϕ+34] 68 \phi + 34\bigr] y2=x3+(13ϕ+13)x+68ϕ+34{y}^2={x}^{3}+\left(13\phi+13\right){x}+68\phi+34
1280.1-a4 1280.1-a Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.9875559211.98755592 1.340249496 14817625 \frac{148176}{25} [0 \bigl[0 , 0 0 , 0 0 , 7ϕ7 -7 \phi - 7 , 12ϕ+6] 12 \phi + 6\bigr] y2=x3+(7ϕ7)x+12ϕ+6{y}^2={x}^{3}+\left(-7\phi-7\right){x}+12\phi+6
1280.1-a5 1280.1-a Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 23.9751118523.97511185 1.340249496 552965 \frac{55296}{5} [0 \bigl[0 , 0 0 , 0 0 , 2ϕ4 2 \phi - 4 , 2ϕ+3] -2 \phi + 3\bigr] y2=x3+(2ϕ4)x2ϕ+3{y}^2={x}^{3}+\left(2\phi-4\right){x}-2\phi+3
1280.1-a6 1280.1-a Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.9937779635.993777963 1.340249496 1323046445 \frac{132304644}{5} [0 \bigl[0 , 0 0 , 0 0 , 107ϕ107 -107 \phi - 107 , 852ϕ+426] 852 \phi + 426\bigr] y2=x3+(107ϕ107)x+852ϕ+426{y}^2={x}^{3}+\left(-107\phi-107\right){x}+852\phi+426
1280.1-a7 1280.1-a Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.9937779635.993777963 1.340249496 2370358085a+1464968165 \frac{237035808}{5} a + \frac{146496816}{5} [0 \bigl[0 , 0 0 , 0 0 , 8ϕ+1 -8 \phi + 1 , 16ϕ+10] -16 \phi + 10\bigr] y2=x3+(8ϕ+1)x16ϕ+10{y}^2={x}^{3}+\left(-8\phi+1\right){x}-16\phi+10
1280.1-a8 1280.1-a Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.9968889812.996888981 1.340249496 15655637178893165a+9675715891870625 \frac{1565563717889316}{5} a + \frac{967571589187062}{5} [0 \bigl[0 , 0 0 , 0 0 , 173ϕ374 -173 \phi - 374 , 3764ϕ+346] 3764 \phi + 346\bigr] y2=x3+(173ϕ374)x+3764ϕ+346{y}^2={x}^{3}+\left(-173\phi-374\right){x}+3764\phi+346
1280.1-b1 1280.1-b Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 6.4845470056.484547005 1.449988790 1613607658625a+522073008125 -\frac{1613607658}{625} a + \frac{522073008}{125} [0 \bigl[0 , ϕ+1 -\phi + 1 , 0 0 , 60ϕ144 60 \phi - 144 , 276ϕ+676] -276 \phi + 676\bigr] y2=x3+(ϕ+1)x2+(60ϕ144)x276ϕ+676{y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(60\phi-144\right){x}-276\phi+676
1280.1-b2 1280.1-b Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 12.9690940112.96909401 1.449988790 28165a+17925 \frac{2816}{5} a + \frac{1792}{5} [0 \bigl[0 , ϕ+1 -\phi + 1 , 0 0 , 1 1 , 0] 0\bigr] y2=x3+(ϕ+1)x2+x{y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+{x}
1280.1-b3 1280.1-b Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 12.9690940112.96909401 1.449988790 533285a+978885 -\frac{53328}{5} a + \frac{97888}{5} [0 \bigl[0 , ϕ+1 -\phi + 1 , 0 0 , 4 -4 , 4ϕ4] 4 \phi - 4\bigr] y2=x3+(ϕ+1)x24x+4ϕ4{y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}-4{x}+4\phi-4
1280.1-b4 1280.1-b Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.2422735023.242273502 1.449988790 14444953165a+23375091485 -\frac{1444495316}{5} a + \frac{2337509148}{5} [0 \bigl[0 , ϕ+1 -\phi + 1 , 0 0 , 20ϕ64 20 \phi - 64 , 108ϕ236] 108 \phi - 236\bigr] y2=x3+(ϕ+1)x2+(20ϕ64)x+108ϕ236{y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(20\phi-64\right){x}+108\phi-236
1280.1-b5 1280.1-b Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 12.9690940112.96909401 1.449988790 2275587625a+1414470825 \frac{22755876}{25} a + \frac{14144708}{25} [0 \bigl[0 , ϕ+1 -\phi + 1 , 0 0 , 20ϕ24 -20 \phi - 24 , 76ϕ+52] 76 \phi + 52\bigr] y2=x3+(ϕ+1)x2+(20ϕ24)x+76ϕ+52{y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-20\phi-24\right){x}+76\phi+52
1280.1-b6 1280.1-b Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 6.4845470056.484547005 1.449988790 92858834945785a+57389916195525 \frac{9285883494578}{5} a + \frac{5738991619552}{5} [0 \bigl[0 , ϕ \phi , 0 0 , 165ϕ+136 -165 \phi + 136 , 379ϕ+1125] -379 \phi + 1125\bigr] y2=x3+ϕx2+(165ϕ+136)x379ϕ+1125{y}^2={x}^{3}+\phi{x}^{2}+\left(-165\phi+136\right){x}-379\phi+1125
1280.1-c1 1280.1-c Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.8046046752.804604675 1.254257341 1613607658625a+522073008125 -\frac{1613607658}{625} a + \frac{522073008}{125} [0 \bigl[0 , 1 1 , 0 0 , 24ϕ84 -24 \phi - 84 , 524ϕ124] -524 \phi - 124\bigr] y2=x3+x2+(24ϕ84)x524ϕ124{y}^2={x}^{3}+{x}^{2}+\left(-24\phi-84\right){x}-524\phi-124
1280.1-c2 1280.1-c Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.2184187011.21841870 1.254257341 28165a+17925 \frac{2816}{5} a + \frac{1792}{5} [0 \bigl[0 , ϕ1 -\phi - 1 , 0 0 , ϕ+1 \phi + 1 , 1] -1\bigr] y2=x3+(ϕ1)x2+(ϕ+1)x1{y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(\phi+1\right){x}-1
1280.1-c3 1280.1-c Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.2184187011.21841870 1.254257341 533285a+978885 -\frac{53328}{5} a + \frac{97888}{5} [0 \bigl[0 , 1 1 , 0 0 , 4ϕ4 -4 \phi - 4 , 4ϕ4] -4 \phi - 4\bigr] y2=x3+x2+(4ϕ4)x4ϕ4{y}^2={x}^{3}+{x}^{2}+\left(-4\phi-4\right){x}-4\phi-4
1280.1-c4 1280.1-c Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.6092093515.609209351 1.254257341 14444953165a+23375091485 -\frac{1444495316}{5} a + \frac{2337509148}{5} [0 \bigl[0 , 1 1 , 0 0 , 24ϕ44 -24 \phi - 44 , 148ϕ+20] 148 \phi + 20\bigr] y2=x3+x2+(24ϕ44)x+148ϕ+20{y}^2={x}^{3}+{x}^{2}+\left(-24\phi-44\right){x}+148\phi+20
1280.1-c5 1280.1-c Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.6092093515.609209351 1.254257341 2275587625a+1414470825 \frac{22755876}{25} a + \frac{14144708}{25} [0 \bigl[0 , ϕ1 -\phi - 1 , 0 0 , 6ϕ29 6 \phi - 29 , 33ϕ+33] -33 \phi + 33\bigr] y2=x3+(ϕ1)x2+(6ϕ29)x33ϕ+33{y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(6\phi-29\right){x}-33\phi+33
1280.1-c6 1280.1-c Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.4023023371.402302337 1.254257341 92858834945785a+57389916195525 \frac{9285883494578}{5} a + \frac{5738991619552}{5} [0 \bigl[0 , ϕ1 -\phi - 1 , 0 0 , 194ϕ29 -194 \phi - 29 , 1113ϕ367] -1113 \phi - 367\bigr] y2=x3+(ϕ1)x2+(194ϕ29)x1113ϕ367{y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-194\phi-29\right){x}-1113\phi-367
1280.1-d1 1280.1-d Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.1410318852.141031885 1.436247851 2072046415625 -\frac{20720464}{15625} [0 \bigl[0 , ϕ1 \phi - 1 , 0 0 , 36ϕ72 36 \phi - 72 , 280ϕ+420] -280 \phi + 420\bigr] y2=x3+(ϕ1)x2+(36ϕ72)x280ϕ+420{y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(36\phi-72\right){x}-280\phi+420
1280.1-d2 1280.1-d Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 6.4230956566.423095656 1.436247851 2129625 \frac{21296}{25} [0 \bigl[0 , ϕ \phi , 0 0 , 4ϕ+4 4 \phi + 4 , 8ϕ+4] 8 \phi + 4\bigr] y2=x3+ϕx2+(4ϕ+4)x+8ϕ+4{y}^2={x}^{3}+\phi{x}^{2}+\left(4\phi+4\right){x}+8\phi+4
1280.1-d3 1280.1-d Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 8.5641275428.564127542 1.436247851 17040388708217625a+27571928118468825 -\frac{170403887082176}{25} a + \frac{275719281184688}{25} [0 \bigl[0 , ϕ \phi , 0 0 , 59ϕ216 59 \phi - 216 , 887ϕ+1049] -887 \phi + 1049\bigr] y2=x3+ϕx2+(59ϕ216)x887ϕ+1049{y}^2={x}^{3}+\phi{x}^{2}+\left(59\phi-216\right){x}-887\phi+1049
1280.1-d4 1280.1-d Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 25.6923826225.69238262 1.436247851 163845 \frac{16384}{5} [0 \bigl[0 , ϕ \phi , 0 0 , ϕ1 -\phi - 1 , 0] 0\bigr] y2=x3+ϕx2+(ϕ1)x{y}^2={x}^{3}+\phi{x}^{2}+\left(-\phi-1\right){x}
1280.1-d5 1280.1-d Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 6.4230956566.423095656 1.436247851 133528965a+217331685 -\frac{13352896}{5} a + \frac{21733168}{5} [0 \bigl[0 , ϕ \phi , 0 0 , 6ϕ11 -6 \phi - 11 , 19ϕ18] -19 \phi - 18\bigr] y2=x3+ϕx2+(6ϕ11)x19ϕ18{y}^2={x}^{3}+\phi{x}^{2}+\left(-6\phi-11\right){x}-19\phi-18
1280.1-d6 1280.1-d Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.5641275428.564127542 1.436247851 488095744125 \frac{488095744}{125} [0 \bigl[0 , ϕ1 \phi - 1 , 0 0 , 41ϕ82 41 \phi - 82 , 232ϕ+348] -232 \phi + 348\bigr] y2=x3+(ϕ1)x2+(41ϕ82)x232ϕ+348{y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(41\phi-82\right){x}-232\phi+348
1280.1-d7 1280.1-d Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 25.6923826225.69238262 1.436247851 133528965a+83802725 \frac{13352896}{5} a + \frac{8380272}{5} [0 \bigl[0 , ϕ1 \phi - 1 , 0 0 , 6ϕ17 6 \phi - 17 , 19ϕ+37] -19 \phi + 37\bigr] y2=x3+(ϕ1)x2+(6ϕ17)x19ϕ+37{y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(6\phi-17\right){x}-19\phi+37
1280.1-d8 1280.1-d Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.1410318852.141031885 1.436247851 17040388708217625a+10531539410251225 \frac{170403887082176}{25} a + \frac{105315394102512}{25} [0 \bigl[0 , ϕ1 \phi - 1 , 0 0 , 59ϕ157 -59 \phi - 157 , 887ϕ162] -887 \phi - 162\bigr] y2=x3+(ϕ1)x2+(59ϕ157)x887ϕ162{y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(-59\phi-157\right){x}-887\phi-162
1280.1-e1 1280.1-e Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3474046860.347404686 20.9365205520.93652055 1.626391824 28165a+46085 -\frac{2816}{5} a + \frac{4608}{5} [0 \bigl[0 , ϕ1 -\phi - 1 , 0 0 , ϕ+1 \phi + 1 , 0] 0\bigr] y2=x3+(ϕ1)x2+(ϕ+1)x{y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(\phi+1\right){x}
1280.1-e2 1280.1-e Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.1737023430.173702343 5.2341301385.234130138 1.626391824 92858834945785a+3004975022826 -\frac{9285883494578}{5} a + 3004975022826 [0 \bigl[0 , ϕ1 -\phi - 1 , 0 0 , 196ϕ224 196 \phi - 224 , 1308ϕ+1704] -1308 \phi + 1704\bigr] y2=x3+(ϕ1)x2+(196ϕ224)x1308ϕ+1704{y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(196\phi-224\right){x}-1308\phi+1704
1280.1-e3 1280.1-e Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.3474046860.347404686 10.4682602710.46826027 1.626391824 2275587625a+3690058425 -\frac{22755876}{25} a + \frac{36900584}{25} [0 \bigl[0 , ϕ1 -\phi - 1 , 0 0 , 4ϕ24 -4 \phi - 24 , 28ϕ+24] -28 \phi + 24\bigr] y2=x3+(ϕ1)x2+(4ϕ24)x28ϕ+24{y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-4\phi-24\right){x}-28\phi+24
1280.1-e4 1280.1-e Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.1737023430.173702343 20.9365205520.93652055 1.626391824 533285a+8912 \frac{53328}{5} a + 8912 [0 \bigl[0 , 1 -1 , 0 0 , 4ϕ8 4 \phi - 8 , 4ϕ+8] -4 \phi + 8\bigr] y2=x3x2+(4ϕ8)x4ϕ+8{y}^2={x}^{3}-{x}^{2}+\left(4\phi-8\right){x}-4\phi+8
1280.1-e5 1280.1-e Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.6948093720.694809372 2.6170650692.617065069 1.626391824 1613607658625a+996757382625 \frac{1613607658}{625} a + \frac{996757382}{625} [0 \bigl[0 , 1 -1 , 0 0 , 24ϕ108 24 \phi - 108 , 524ϕ+648] -524 \phi + 648\bigr] y2=x3x2+(24ϕ108)x524ϕ+648{y}^2={x}^{3}-{x}^{2}+\left(24\phi-108\right){x}-524\phi+648
1280.1-e6 1280.1-e Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3474046860.347404686 10.4682602710.46826027 1.626391824 14444953165a+8930138325 \frac{1444495316}{5} a + \frac{893013832}{5} [0 \bigl[0 , 1 -1 , 0 0 , 24ϕ68 24 \phi - 68 , 148ϕ168] 148 \phi - 168\bigr] y2=x3x2+(24ϕ68)x+148ϕ168{y}^2={x}^{3}-{x}^{2}+\left(24\phi-68\right){x}+148\phi-168
1280.1-f1 1280.1-f Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.1718273525.171827352 1.156455752 2072046415625 -\frac{20720464}{15625} [0 \bigl[0 , 1 -1 , 0 0 , 36 -36 , 140] 140\bigr] y2=x3x236x+140{y}^2={x}^{3}-{x}^{2}-36{x}+140
1280.1-f2 1280.1-f Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.1718273525.171827352 1.156455752 2129625 \frac{21296}{25} [0 \bigl[0 , 1 -1 , 0 0 , 4 4 , 4] -4\bigr] y2=x3x2+4x4{y}^2={x}^{3}-{x}^{2}+4{x}-4
1280.1-f3 1280.1-f Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 10.3436547010.34365470 1.156455752 17040388708217625a+27571928118468825 -\frac{170403887082176}{25} a + \frac{275719281184688}{25} [0 \bigl[0 , ϕ1 -\phi - 1 , 0 0 , 98ϕ157 -98 \phi - 157 , 563ϕ+725] 563 \phi + 725\bigr] y2=x3+(ϕ1)x2+(98ϕ157)x+563ϕ+725{y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-98\phi-157\right){x}+563\phi+725
1280.1-f4 1280.1-f Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 20.6873094120.68730941 1.156455752 163845 \frac{16384}{5} [0 \bigl[0 , 1 -1 , 0 0 , 1 -1 , 0] 0\bigr] y2=x3x2x{y}^2={x}^{3}-{x}^{2}-{x}
1280.1-f5 1280.1-f Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 10.3436547010.34365470 1.156455752 133528965a+217331685 -\frac{13352896}{5} a + \frac{21733168}{5} [0 \bigl[0 , 1 -1 , 0 0 , 5ϕ16 5 \phi - 16 , 17ϕ16] 17 \phi - 16\bigr] y2=x3x2+(5ϕ16)x+17ϕ16{y}^2={x}^{3}-{x}^{2}+\left(5\phi-16\right){x}+17\phi-16
1280.1-f6 1280.1-f Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 20.6873094120.68730941 1.156455752 488095744125 \frac{488095744}{125} [0 \bigl[0 , 1 -1 , 0 0 , 41 -41 , 116] 116\bigr] y2=x3x241x+116{y}^2={x}^{3}-{x}^{2}-41{x}+116
1280.1-f7 1280.1-f Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 10.3436547010.34365470 1.156455752 133528965a+83802725 \frac{13352896}{5} a + \frac{8380272}{5} [0 \bigl[0 , 1 -1 , 0 0 , 5ϕ11 -5 \phi - 11 , 17ϕ+1] -17 \phi + 1\bigr] y2=x3x2+(5ϕ11)x17ϕ+1{y}^2={x}^{3}-{x}^{2}+\left(-5\phi-11\right){x}-17\phi+1
1280.1-f8 1280.1-f Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 10.3436547010.34365470 1.156455752 17040388708217625a+10531539410251225 \frac{170403887082176}{25} a + \frac{105315394102512}{25} [0 \bigl[0 , ϕ+1 \phi + 1 , 0 0 , 100ϕ256 100 \phi - 256 , 464ϕ+1032] -464 \phi + 1032\bigr] y2=x3+(ϕ+1)x2+(100ϕ256)x464ϕ+1032{y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(100\phi-256\right){x}-464\phi+1032
1280.1-g1 1280.1-g Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 12.9690940112.96909401 1.449988790 28165a+46085 -\frac{2816}{5} a + \frac{4608}{5} [0 \bigl[0 , ϕ \phi , 0 0 , 1 1 , 0] 0\bigr] y2=x3+ϕx2+x{y}^2={x}^{3}+\phi{x}^{2}+{x}
1280.1-g2 1280.1-g Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 6.4845470056.484547005 1.449988790 92858834945785a+3004975022826 -\frac{9285883494578}{5} a + 3004975022826 [0 \bigl[0 , ϕ+1 -\phi + 1 , 0 0 , 165ϕ29 165 \phi - 29 , 379ϕ+746] 379 \phi + 746\bigr] y2=x3+(ϕ+1)x2+(165ϕ29)x+379ϕ+746{y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(165\phi-29\right){x}+379\phi+746
1280.1-g3 1280.1-g Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 12.9690940112.96909401 1.449988790 2275587625a+3690058425 -\frac{22755876}{25} a + \frac{36900584}{25} [0 \bigl[0 , ϕ \phi , 0 0 , 20ϕ44 20 \phi - 44 , 76ϕ+128] -76 \phi + 128\bigr] y2=x3+ϕx2+(20ϕ44)x76ϕ+128{y}^2={x}^{3}+\phi{x}^{2}+\left(20\phi-44\right){x}-76\phi+128
1280.1-g4 1280.1-g Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 12.9690940112.96909401 1.449988790 533285a+8912 \frac{53328}{5} a + 8912 [0 \bigl[0 , ϕ \phi , 0 0 , 4 -4 , 4ϕ] -4 \phi\bigr] y2=x3+ϕx24x4ϕ{y}^2={x}^{3}+\phi{x}^{2}-4{x}-4\phi
1280.1-g5 1280.1-g Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 6.4845470056.484547005 1.449988790 1613607658625a+996757382625 \frac{1613607658}{625} a + \frac{996757382}{625} [0 \bigl[0 , ϕ \phi , 0 0 , 60ϕ84 -60 \phi - 84 , 276ϕ+400] 276 \phi + 400\bigr] y2=x3+ϕx2+(60ϕ84)x+276ϕ+400{y}^2={x}^{3}+\phi{x}^{2}+\left(-60\phi-84\right){x}+276\phi+400
1280.1-g6 1280.1-g Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.2422735023.242273502 1.449988790 14444953165a+8930138325 \frac{1444495316}{5} a + \frac{893013832}{5} [0 \bigl[0 , ϕ \phi , 0 0 , 20ϕ44 -20 \phi - 44 , 108ϕ128] -108 \phi - 128\bigr] y2=x3+ϕx2+(20ϕ44)x108ϕ128{y}^2={x}^{3}+\phi{x}^{2}+\left(-20\phi-44\right){x}-108\phi-128
1280.1-h1 1280.1-h Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.6948093720.694809372 2.6170650692.617065069 1.626391824 1613607658625a+522073008125 -\frac{1613607658}{625} a + \frac{522073008}{125} [0 \bigl[0 , 1 -1 , 0 0 , 24ϕ84 -24 \phi - 84 , 524ϕ+124] 524 \phi + 124\bigr] y2=x3x2+(24ϕ84)x+524ϕ+124{y}^2={x}^{3}-{x}^{2}+\left(-24\phi-84\right){x}+524\phi+124
1280.1-h2 1280.1-h Q(5)\Q(\sqrt{5}) 285 2^{8} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3474046860.347404686 20.9365205520.93652055 1.626391824 28165a+17925 \frac{2816}{5} a + \frac{1792}{5} [0 \bigl[0 , ϕ+1 \phi + 1 , 0 0 , ϕ+1 \phi + 1 , 1] 1\bigr] y2=x3+(ϕ+1)x2+(ϕ+1)x+1{y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(\phi+1\right){x}+1
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.