1280.1-a1
1280.1-a
8 8 8
16 16 1 6
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
− 2 22 ⋅ 5 - 2^{22} \cdot 5 − 2 2 2 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
4 4 4
2 2 2
1 1 1
1.498444490 1.498444490 1 . 4 9 8 4 4 4 4 9 0
1.340249496
− 1565563717889316 5 a + 2533135307076378 5 -\frac{1565563717889316}{5} a + \frac{2533135307076378}{5} − 5 1 5 6 5 5 6 3 7 1 7 8 8 9 3 1 6 a + 5 2 5 3 3 1 3 5 3 0 7 0 7 6 3 7 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 173 ϕ − 547 173 \phi - 547 1 7 3 ϕ − 5 4 7 , 3764 ϕ − 4110 ] 3764 \phi - 4110\bigr] 3 7 6 4 ϕ − 4 1 1 0 ]
y 2 = x 3 + ( 173 ϕ − 547 ) x + 3764 ϕ − 4110 {y}^2={x}^{3}+\left(173\phi-547\right){x}+3764\phi-4110 y 2 = x 3 + ( 1 7 3 ϕ − 5 4 7 ) x + 3 7 6 4 ϕ − 4 1 1 0
1280.1-a2
1280.1-a
8 8 8
16 16 1 6
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
− 2 16 ⋅ 5 - 2^{16} \cdot 5 − 2 1 6 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
1 1 1
1 1 1
11.98755592 11.98755592 1 1 . 9 8 7 5 5 5 9 2
1.340249496
− 237035808 5 a + 383532624 5 -\frac{237035808}{5} a + \frac{383532624}{5} − 5 2 3 7 0 3 5 8 0 8 a + 5 3 8 3 5 3 2 6 2 4
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 8 ϕ − 7 8 \phi - 7 8 ϕ − 7 , − 16 ϕ + 6 ] -16 \phi + 6\bigr] − 1 6 ϕ + 6 ]
y 2 = x 3 + ( 8 ϕ − 7 ) x − 16 ϕ + 6 {y}^2={x}^{3}+\left(8\phi-7\right){x}-16\phi+6 y 2 = x 3 + ( 8 ϕ − 7 ) x − 1 6 ϕ + 6
1280.1-a3
1280.1-a
8 8 8
16 16 1 6
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 20 ⋅ 5 8 2^{20} \cdot 5^{8} 2 2 0 ⋅ 5 8
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
2.996888981 2.996888981 2 . 9 9 6 8 8 8 9 8 1
1.340249496
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 13 ϕ + 13 13 \phi + 13 1 3 ϕ + 1 3 , 68 ϕ + 34 ] 68 \phi + 34\bigr] 6 8 ϕ + 3 4 ]
y 2 = x 3 + ( 13 ϕ + 13 ) x + 68 ϕ + 34 {y}^2={x}^{3}+\left(13\phi+13\right){x}+68\phi+34 y 2 = x 3 + ( 1 3 ϕ + 1 3 ) x + 6 8 ϕ + 3 4
1280.1-a4
1280.1-a
8 8 8
16 16 1 6
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 4 2^{16} \cdot 5^{4} 2 1 6 ⋅ 5 4
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 2 2^{2} 2 2
1 1 1
11.98755592 11.98755592 1 1 . 9 8 7 5 5 5 9 2
1.340249496
148176 25 \frac{148176}{25} 2 5 1 4 8 1 7 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 7 ϕ − 7 -7 \phi - 7 − 7 ϕ − 7 , 12 ϕ + 6 ] 12 \phi + 6\bigr] 1 2 ϕ + 6 ]
y 2 = x 3 + ( − 7 ϕ − 7 ) x + 12 ϕ + 6 {y}^2={x}^{3}+\left(-7\phi-7\right){x}+12\phi+6 y 2 = x 3 + ( − 7 ϕ − 7 ) x + 1 2 ϕ + 6
1280.1-a5
1280.1-a
8 8 8
16 16 1 6
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 8 ⋅ 5 2 2^{8} \cdot 5^{2} 2 8 ⋅ 5 2
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 2 2
1 1 1
23.97511185 23.97511185 2 3 . 9 7 5 1 1 1 8 5
1.340249496
55296 5 \frac{55296}{5} 5 5 5 2 9 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 2 ϕ − 4 2 \phi - 4 2 ϕ − 4 , − 2 ϕ + 3 ] -2 \phi + 3\bigr] − 2 ϕ + 3 ]
y 2 = x 3 + ( 2 ϕ − 4 ) x − 2 ϕ + 3 {y}^2={x}^{3}+\left(2\phi-4\right){x}-2\phi+3 y 2 = x 3 + ( 2 ϕ − 4 ) x − 2 ϕ + 3
1280.1-a6
1280.1-a
8 8 8
16 16 1 6
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 20 ⋅ 5 2 2^{20} \cdot 5^{2} 2 2 0 ⋅ 5 2
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
1 1 1
5.993777963 5.993777963 5 . 9 9 3 7 7 7 9 6 3
1.340249496
132304644 5 \frac{132304644}{5} 5 1 3 2 3 0 4 6 4 4
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 107 ϕ − 107 -107 \phi - 107 − 1 0 7 ϕ − 1 0 7 , 852 ϕ + 426 ] 852 \phi + 426\bigr] 8 5 2 ϕ + 4 2 6 ]
y 2 = x 3 + ( − 107 ϕ − 107 ) x + 852 ϕ + 426 {y}^2={x}^{3}+\left(-107\phi-107\right){x}+852\phi+426 y 2 = x 3 + ( − 1 0 7 ϕ − 1 0 7 ) x + 8 5 2 ϕ + 4 2 6
1280.1-a7
1280.1-a
8 8 8
16 16 1 6
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
− 2 16 ⋅ 5 - 2^{16} \cdot 5 − 2 1 6 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
5.993777963 5.993777963 5 . 9 9 3 7 7 7 9 6 3
1.340249496
237035808 5 a + 146496816 5 \frac{237035808}{5} a + \frac{146496816}{5} 5 2 3 7 0 3 5 8 0 8 a + 5 1 4 6 4 9 6 8 1 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 8 ϕ + 1 -8 \phi + 1 − 8 ϕ + 1 , − 16 ϕ + 10 ] -16 \phi + 10\bigr] − 1 6 ϕ + 1 0 ]
y 2 = x 3 + ( − 8 ϕ + 1 ) x − 16 ϕ + 10 {y}^2={x}^{3}+\left(-8\phi+1\right){x}-16\phi+10 y 2 = x 3 + ( − 8 ϕ + 1 ) x − 1 6 ϕ + 1 0
1280.1-a8
1280.1-a
8 8 8
16 16 1 6
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
− 2 22 ⋅ 5 - 2^{22} \cdot 5 − 2 2 2 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
2.996888981 2.996888981 2 . 9 9 6 8 8 8 9 8 1
1.340249496
1565563717889316 5 a + 967571589187062 5 \frac{1565563717889316}{5} a + \frac{967571589187062}{5} 5 1 5 6 5 5 6 3 7 1 7 8 8 9 3 1 6 a + 5 9 6 7 5 7 1 5 8 9 1 8 7 0 6 2
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 173 ϕ − 374 -173 \phi - 374 − 1 7 3 ϕ − 3 7 4 , 3764 ϕ + 346 ] 3764 \phi + 346\bigr] 3 7 6 4 ϕ + 3 4 6 ]
y 2 = x 3 + ( − 173 ϕ − 374 ) x + 3764 ϕ + 346 {y}^2={x}^{3}+\left(-173\phi-374\right){x}+3764\phi+346 y 2 = x 3 + ( − 1 7 3 ϕ − 3 7 4 ) x + 3 7 6 4 ϕ + 3 4 6
1280.1-b1
1280.1-b
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
− 2 22 ⋅ 5 8 - 2^{22} \cdot 5^{8} − 2 2 2 ⋅ 5 8
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 8 Z \Z/8\Z Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 5 2^{5} 2 5
1 1 1
6.484547005 6.484547005 6 . 4 8 4 5 4 7 0 0 5
1.449988790
− 1613607658 625 a + 522073008 125 -\frac{1613607658}{625} a + \frac{522073008}{125} − 6 2 5 1 6 1 3 6 0 7 6 5 8 a + 1 2 5 5 2 2 0 7 3 0 0 8
[ 0 \bigl[0 [ 0 , − ϕ + 1 -\phi + 1 − ϕ + 1 , 0 0 0 , 60 ϕ − 144 60 \phi - 144 6 0 ϕ − 1 4 4 , − 276 ϕ + 676 ] -276 \phi + 676\bigr] − 2 7 6 ϕ + 6 7 6 ]
y 2 = x 3 + ( − ϕ + 1 ) x 2 + ( 60 ϕ − 144 ) x − 276 ϕ + 676 {y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(60\phi-144\right){x}-276\phi+676 y 2 = x 3 + ( − ϕ + 1 ) x 2 + ( 6 0 ϕ − 1 4 4 ) x − 2 7 6 ϕ + 6 7 6
1280.1-b2
1280.1-b
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
1 1 1
1 1 1
12.96909401 12.96909401 1 2 . 9 6 9 0 9 4 0 1
1.449988790
2816 5 a + 1792 5 \frac{2816}{5} a + \frac{1792}{5} 5 2 8 1 6 a + 5 1 7 9 2
[ 0 \bigl[0 [ 0 , − ϕ + 1 -\phi + 1 − ϕ + 1 , 0 0 0 , 1 1 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + ( − ϕ + 1 ) x 2 + x {y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+{x} y 2 = x 3 + ( − ϕ + 1 ) x 2 + x
1280.1-b3
1280.1-b
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 2 2^{16} \cdot 5^{2} 2 1 6 ⋅ 5 2
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 2 2^{2} 2 2
1 1 1
12.96909401 12.96909401 1 2 . 9 6 9 0 9 4 0 1
1.449988790
− 53328 5 a + 97888 5 -\frac{53328}{5} a + \frac{97888}{5} − 5 5 3 3 2 8 a + 5 9 7 8 8 8
[ 0 \bigl[0 [ 0 , − ϕ + 1 -\phi + 1 − ϕ + 1 , 0 0 0 , − 4 -4 − 4 , 4 ϕ − 4 ] 4 \phi - 4\bigr] 4 ϕ − 4 ]
y 2 = x 3 + ( − ϕ + 1 ) x 2 − 4 x + 4 ϕ − 4 {y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}-4{x}+4\phi-4 y 2 = x 3 + ( − ϕ + 1 ) x 2 − 4 x + 4 ϕ − 4
1280.1-b4
1280.1-b
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 20 ⋅ 5 2^{20} \cdot 5 2 2 0 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
3.242273502 3.242273502 3 . 2 4 2 2 7 3 5 0 2
1.449988790
− 1444495316 5 a + 2337509148 5 -\frac{1444495316}{5} a + \frac{2337509148}{5} − 5 1 4 4 4 4 9 5 3 1 6 a + 5 2 3 3 7 5 0 9 1 4 8
[ 0 \bigl[0 [ 0 , − ϕ + 1 -\phi + 1 − ϕ + 1 , 0 0 0 , 20 ϕ − 64 20 \phi - 64 2 0 ϕ − 6 4 , 108 ϕ − 236 ] 108 \phi - 236\bigr] 1 0 8 ϕ − 2 3 6 ]
y 2 = x 3 + ( − ϕ + 1 ) x 2 + ( 20 ϕ − 64 ) x + 108 ϕ − 236 {y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(20\phi-64\right){x}+108\phi-236 y 2 = x 3 + ( − ϕ + 1 ) x 2 + ( 2 0 ϕ − 6 4 ) x + 1 0 8 ϕ − 2 3 6
1280.1-b5
1280.1-b
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 20 ⋅ 5 4 2^{20} \cdot 5^{4} 2 2 0 ⋅ 5 4
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
12.96909401 12.96909401 1 2 . 9 6 9 0 9 4 0 1
1.449988790
22755876 25 a + 14144708 25 \frac{22755876}{25} a + \frac{14144708}{25} 2 5 2 2 7 5 5 8 7 6 a + 2 5 1 4 1 4 4 7 0 8
[ 0 \bigl[0 [ 0 , − ϕ + 1 -\phi + 1 − ϕ + 1 , 0 0 0 , − 20 ϕ − 24 -20 \phi - 24 − 2 0 ϕ − 2 4 , 76 ϕ + 52 ] 76 \phi + 52\bigr] 7 6 ϕ + 5 2 ]
y 2 = x 3 + ( − ϕ + 1 ) x 2 + ( − 20 ϕ − 24 ) x + 76 ϕ + 52 {y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-20\phi-24\right){x}+76\phi+52 y 2 = x 3 + ( − ϕ + 1 ) x 2 + ( − 2 0 ϕ − 2 4 ) x + 7 6 ϕ + 5 2
1280.1-b6
1280.1-b
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
− 2 22 ⋅ 5 2 - 2^{22} \cdot 5^{2} − 2 2 2 ⋅ 5 2
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
6.484547005 6.484547005 6 . 4 8 4 5 4 7 0 0 5
1.449988790
9285883494578 5 a + 5738991619552 5 \frac{9285883494578}{5} a + \frac{5738991619552}{5} 5 9 2 8 5 8 8 3 4 9 4 5 7 8 a + 5 5 7 3 8 9 9 1 6 1 9 5 5 2
[ 0 \bigl[0 [ 0 , ϕ \phi ϕ , 0 0 0 , − 165 ϕ + 136 -165 \phi + 136 − 1 6 5 ϕ + 1 3 6 , − 379 ϕ + 1125 ] -379 \phi + 1125\bigr] − 3 7 9 ϕ + 1 1 2 5 ]
y 2 = x 3 + ϕ x 2 + ( − 165 ϕ + 136 ) x − 379 ϕ + 1125 {y}^2={x}^{3}+\phi{x}^{2}+\left(-165\phi+136\right){x}-379\phi+1125 y 2 = x 3 + ϕ x 2 + ( − 1 6 5 ϕ + 1 3 6 ) x − 3 7 9 ϕ + 1 1 2 5
1280.1-c1
1280.1-c
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
− 2 22 ⋅ 5 8 - 2^{22} \cdot 5^{8} − 2 2 2 ⋅ 5 8
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
2.804604675 2.804604675 2 . 8 0 4 6 0 4 6 7 5
1.254257341
− 1613607658 625 a + 522073008 125 -\frac{1613607658}{625} a + \frac{522073008}{125} − 6 2 5 1 6 1 3 6 0 7 6 5 8 a + 1 2 5 5 2 2 0 7 3 0 0 8
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 24 ϕ − 84 -24 \phi - 84 − 2 4 ϕ − 8 4 , − 524 ϕ − 124 ] -524 \phi - 124\bigr] − 5 2 4 ϕ − 1 2 4 ]
y 2 = x 3 + x 2 + ( − 24 ϕ − 84 ) x − 524 ϕ − 124 {y}^2={x}^{3}+{x}^{2}+\left(-24\phi-84\right){x}-524\phi-124 y 2 = x 3 + x 2 + ( − 2 4 ϕ − 8 4 ) x − 5 2 4 ϕ − 1 2 4
1280.1-c2
1280.1-c
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
1 1 1
1 1 1
11.21841870 11.21841870 1 1 . 2 1 8 4 1 8 7 0
1.254257341
2816 5 a + 1792 5 \frac{2816}{5} a + \frac{1792}{5} 5 2 8 1 6 a + 5 1 7 9 2
[ 0 \bigl[0 [ 0 , − ϕ − 1 -\phi - 1 − ϕ − 1 , 0 0 0 , ϕ + 1 \phi + 1 ϕ + 1 , − 1 ] -1\bigr] − 1 ]
y 2 = x 3 + ( − ϕ − 1 ) x 2 + ( ϕ + 1 ) x − 1 {y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(\phi+1\right){x}-1 y 2 = x 3 + ( − ϕ − 1 ) x 2 + ( ϕ + 1 ) x − 1
1280.1-c3
1280.1-c
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 2 2^{16} \cdot 5^{2} 2 1 6 ⋅ 5 2
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 2 2^{2} 2 2
1 1 1
11.21841870 11.21841870 1 1 . 2 1 8 4 1 8 7 0
1.254257341
− 53328 5 a + 97888 5 -\frac{53328}{5} a + \frac{97888}{5} − 5 5 3 3 2 8 a + 5 9 7 8 8 8
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 4 ϕ − 4 -4 \phi - 4 − 4 ϕ − 4 , − 4 ϕ − 4 ] -4 \phi - 4\bigr] − 4 ϕ − 4 ]
y 2 = x 3 + x 2 + ( − 4 ϕ − 4 ) x − 4 ϕ − 4 {y}^2={x}^{3}+{x}^{2}+\left(-4\phi-4\right){x}-4\phi-4 y 2 = x 3 + x 2 + ( − 4 ϕ − 4 ) x − 4 ϕ − 4
1280.1-c4
1280.1-c
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 20 ⋅ 5 2^{20} \cdot 5 2 2 0 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2
1 1 1
5.609209351 5.609209351 5 . 6 0 9 2 0 9 3 5 1
1.254257341
− 1444495316 5 a + 2337509148 5 -\frac{1444495316}{5} a + \frac{2337509148}{5} − 5 1 4 4 4 4 9 5 3 1 6 a + 5 2 3 3 7 5 0 9 1 4 8
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 24 ϕ − 44 -24 \phi - 44 − 2 4 ϕ − 4 4 , 148 ϕ + 20 ] 148 \phi + 20\bigr] 1 4 8 ϕ + 2 0 ]
y 2 = x 3 + x 2 + ( − 24 ϕ − 44 ) x + 148 ϕ + 20 {y}^2={x}^{3}+{x}^{2}+\left(-24\phi-44\right){x}+148\phi+20 y 2 = x 3 + x 2 + ( − 2 4 ϕ − 4 4 ) x + 1 4 8 ϕ + 2 0
1280.1-c5
1280.1-c
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 20 ⋅ 5 4 2^{20} \cdot 5^{4} 2 2 0 ⋅ 5 4
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
1 1 1
5.609209351 5.609209351 5 . 6 0 9 2 0 9 3 5 1
1.254257341
22755876 25 a + 14144708 25 \frac{22755876}{25} a + \frac{14144708}{25} 2 5 2 2 7 5 5 8 7 6 a + 2 5 1 4 1 4 4 7 0 8
[ 0 \bigl[0 [ 0 , − ϕ − 1 -\phi - 1 − ϕ − 1 , 0 0 0 , 6 ϕ − 29 6 \phi - 29 6 ϕ − 2 9 , − 33 ϕ + 33 ] -33 \phi + 33\bigr] − 3 3 ϕ + 3 3 ]
y 2 = x 3 + ( − ϕ − 1 ) x 2 + ( 6 ϕ − 29 ) x − 33 ϕ + 33 {y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(6\phi-29\right){x}-33\phi+33 y 2 = x 3 + ( − ϕ − 1 ) x 2 + ( 6 ϕ − 2 9 ) x − 3 3 ϕ + 3 3
1280.1-c6
1280.1-c
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
− 2 22 ⋅ 5 2 - 2^{22} \cdot 5^{2} − 2 2 2 ⋅ 5 2
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
1.402302337 1.402302337 1 . 4 0 2 3 0 2 3 3 7
1.254257341
9285883494578 5 a + 5738991619552 5 \frac{9285883494578}{5} a + \frac{5738991619552}{5} 5 9 2 8 5 8 8 3 4 9 4 5 7 8 a + 5 5 7 3 8 9 9 1 6 1 9 5 5 2
[ 0 \bigl[0 [ 0 , − ϕ − 1 -\phi - 1 − ϕ − 1 , 0 0 0 , − 194 ϕ − 29 -194 \phi - 29 − 1 9 4 ϕ − 2 9 , − 1113 ϕ − 367 ] -1113 \phi - 367\bigr] − 1 1 1 3 ϕ − 3 6 7 ]
y 2 = x 3 + ( − ϕ − 1 ) x 2 + ( − 194 ϕ − 29 ) x − 1113 ϕ − 367 {y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-194\phi-29\right){x}-1113\phi-367 y 2 = x 3 + ( − ϕ − 1 ) x 2 + ( − 1 9 4 ϕ − 2 9 ) x − 1 1 1 3 ϕ − 3 6 7
1280.1-d1
1280.1-d
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 12 2^{16} \cdot 5^{12} 2 1 6 ⋅ 5 1 2
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 3 ⋅ 3 2^{3} \cdot 3 2 3 ⋅ 3
1 1 1
2.141031885 2.141031885 2 . 1 4 1 0 3 1 8 8 5
1.436247851
− 20720464 15625 -\frac{20720464}{15625} − 1 5 6 2 5 2 0 7 2 0 4 6 4
[ 0 \bigl[0 [ 0 , ϕ − 1 \phi - 1 ϕ − 1 , 0 0 0 , 36 ϕ − 72 36 \phi - 72 3 6 ϕ − 7 2 , − 280 ϕ + 420 ] -280 \phi + 420\bigr] − 2 8 0 ϕ + 4 2 0 ]
y 2 = x 3 + ( ϕ − 1 ) x 2 + ( 36 ϕ − 72 ) x − 280 ϕ + 420 {y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(36\phi-72\right){x}-280\phi+420 y 2 = x 3 + ( ϕ − 1 ) x 2 + ( 3 6 ϕ − 7 2 ) x − 2 8 0 ϕ + 4 2 0
1280.1-d2
1280.1-d
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 4 2^{16} \cdot 5^{4} 2 1 6 ⋅ 5 4
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 3 2^{3} 2 3
1 1 1
6.423095656 6.423095656 6 . 4 2 3 0 9 5 6 5 6
1.436247851
21296 25 \frac{21296}{25} 2 5 2 1 2 9 6
[ 0 \bigl[0 [ 0 , ϕ \phi ϕ , 0 0 0 , 4 ϕ + 4 4 \phi + 4 4 ϕ + 4 , 8 ϕ + 4 ] 8 \phi + 4\bigr] 8 ϕ + 4 ]
y 2 = x 3 + ϕ x 2 + ( 4 ϕ + 4 ) x + 8 ϕ + 4 {y}^2={x}^{3}+\phi{x}^{2}+\left(4\phi+4\right){x}+8\phi+4 y 2 = x 3 + ϕ x 2 + ( 4 ϕ + 4 ) x + 8 ϕ + 4
1280.1-d3
1280.1-d
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 3 2^{16} \cdot 5^{3} 2 1 6 ⋅ 5 3
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
8.564127542 8.564127542 8 . 5 6 4 1 2 7 5 4 2
1.436247851
− 170403887082176 25 a + 275719281184688 25 -\frac{170403887082176}{25} a + \frac{275719281184688}{25} − 2 5 1 7 0 4 0 3 8 8 7 0 8 2 1 7 6 a + 2 5 2 7 5 7 1 9 2 8 1 1 8 4 6 8 8
[ 0 \bigl[0 [ 0 , ϕ \phi ϕ , 0 0 0 , 59 ϕ − 216 59 \phi - 216 5 9 ϕ − 2 1 6 , − 887 ϕ + 1049 ] -887 \phi + 1049\bigr] − 8 8 7 ϕ + 1 0 4 9 ]
y 2 = x 3 + ϕ x 2 + ( 59 ϕ − 216 ) x − 887 ϕ + 1049 {y}^2={x}^{3}+\phi{x}^{2}+\left(59\phi-216\right){x}-887\phi+1049 y 2 = x 3 + ϕ x 2 + ( 5 9 ϕ − 2 1 6 ) x − 8 8 7 ϕ + 1 0 4 9
1280.1-d4
1280.1-d
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 8 ⋅ 5 2 2^{8} \cdot 5^{2} 2 8 ⋅ 5 2
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
2 2 2
1 1 1
25.69238262 25.69238262 2 5 . 6 9 2 3 8 2 6 2
1.436247851
16384 5 \frac{16384}{5} 5 1 6 3 8 4
[ 0 \bigl[0 [ 0 , ϕ \phi ϕ , 0 0 0 , − ϕ − 1 -\phi - 1 − ϕ − 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + ϕ x 2 + ( − ϕ − 1 ) x {y}^2={x}^{3}+\phi{x}^{2}+\left(-\phi-1\right){x} y 2 = x 3 + ϕ x 2 + ( − ϕ − 1 ) x
1280.1-d5
1280.1-d
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 2^{16} \cdot 5 2 1 6 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 2 2
1 1 1
6.423095656 6.423095656 6 . 4 2 3 0 9 5 6 5 6
1.436247851
− 13352896 5 a + 21733168 5 -\frac{13352896}{5} a + \frac{21733168}{5} − 5 1 3 3 5 2 8 9 6 a + 5 2 1 7 3 3 1 6 8
[ 0 \bigl[0 [ 0 , ϕ \phi ϕ , 0 0 0 , − 6 ϕ − 11 -6 \phi - 11 − 6 ϕ − 1 1 , − 19 ϕ − 18 ] -19 \phi - 18\bigr] − 1 9 ϕ − 1 8 ]
y 2 = x 3 + ϕ x 2 + ( − 6 ϕ − 11 ) x − 19 ϕ − 18 {y}^2={x}^{3}+\phi{x}^{2}+\left(-6\phi-11\right){x}-19\phi-18 y 2 = x 3 + ϕ x 2 + ( − 6 ϕ − 1 1 ) x − 1 9 ϕ − 1 8
1280.1-d6
1280.1-d
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 8 ⋅ 5 6 2^{8} \cdot 5^{6} 2 8 ⋅ 5 6
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
8.564127542 8.564127542 8 . 5 6 4 1 2 7 5 4 2
1.436247851
488095744 125 \frac{488095744}{125} 1 2 5 4 8 8 0 9 5 7 4 4
[ 0 \bigl[0 [ 0 , ϕ − 1 \phi - 1 ϕ − 1 , 0 0 0 , 41 ϕ − 82 41 \phi - 82 4 1 ϕ − 8 2 , − 232 ϕ + 348 ] -232 \phi + 348\bigr] − 2 3 2 ϕ + 3 4 8 ]
y 2 = x 3 + ( ϕ − 1 ) x 2 + ( 41 ϕ − 82 ) x − 232 ϕ + 348 {y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(41\phi-82\right){x}-232\phi+348 y 2 = x 3 + ( ϕ − 1 ) x 2 + ( 4 1 ϕ − 8 2 ) x − 2 3 2 ϕ + 3 4 8
1280.1-d7
1280.1-d
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 2^{16} \cdot 5 2 1 6 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 2 2
1 1 1
25.69238262 25.69238262 2 5 . 6 9 2 3 8 2 6 2
1.436247851
13352896 5 a + 8380272 5 \frac{13352896}{5} a + \frac{8380272}{5} 5 1 3 3 5 2 8 9 6 a + 5 8 3 8 0 2 7 2
[ 0 \bigl[0 [ 0 , ϕ − 1 \phi - 1 ϕ − 1 , 0 0 0 , 6 ϕ − 17 6 \phi - 17 6 ϕ − 1 7 , − 19 ϕ + 37 ] -19 \phi + 37\bigr] − 1 9 ϕ + 3 7 ]
y 2 = x 3 + ( ϕ − 1 ) x 2 + ( 6 ϕ − 17 ) x − 19 ϕ + 37 {y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(6\phi-17\right){x}-19\phi+37 y 2 = x 3 + ( ϕ − 1 ) x 2 + ( 6 ϕ − 1 7 ) x − 1 9 ϕ + 3 7
1280.1-d8
1280.1-d
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 3 2^{16} \cdot 5^{3} 2 1 6 ⋅ 5 3
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
2.141031885 2.141031885 2 . 1 4 1 0 3 1 8 8 5
1.436247851
170403887082176 25 a + 105315394102512 25 \frac{170403887082176}{25} a + \frac{105315394102512}{25} 2 5 1 7 0 4 0 3 8 8 7 0 8 2 1 7 6 a + 2 5 1 0 5 3 1 5 3 9 4 1 0 2 5 1 2
[ 0 \bigl[0 [ 0 , ϕ − 1 \phi - 1 ϕ − 1 , 0 0 0 , − 59 ϕ − 157 -59 \phi - 157 − 5 9 ϕ − 1 5 7 , − 887 ϕ − 162 ] -887 \phi - 162\bigr] − 8 8 7 ϕ − 1 6 2 ]
y 2 = x 3 + ( ϕ − 1 ) x 2 + ( − 59 ϕ − 157 ) x − 887 ϕ − 162 {y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(-59\phi-157\right){x}-887\phi-162 y 2 = x 3 + ( ϕ − 1 ) x 2 + ( − 5 9 ϕ − 1 5 7 ) x − 8 8 7 ϕ − 1 6 2
1280.1-e1
1280.1-e
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
1 1 1
0.347404686 0.347404686 0 . 3 4 7 4 0 4 6 8 6
20.93652055 20.93652055 2 0 . 9 3 6 5 2 0 5 5
1.626391824
− 2816 5 a + 4608 5 -\frac{2816}{5} a + \frac{4608}{5} − 5 2 8 1 6 a + 5 4 6 0 8
[ 0 \bigl[0 [ 0 , − ϕ − 1 -\phi - 1 − ϕ − 1 , 0 0 0 , ϕ + 1 \phi + 1 ϕ + 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + ( − ϕ − 1 ) x 2 + ( ϕ + 1 ) x {y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(\phi+1\right){x} y 2 = x 3 + ( − ϕ − 1 ) x 2 + ( ϕ + 1 ) x
1280.1-e2
1280.1-e
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
− 2 22 ⋅ 5 2 - 2^{22} \cdot 5^{2} − 2 2 2 ⋅ 5 2
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
0.173702343 0.173702343 0 . 1 7 3 7 0 2 3 4 3
5.234130138 5.234130138 5 . 2 3 4 1 3 0 1 3 8
1.626391824
− 9285883494578 5 a + 3004975022826 -\frac{9285883494578}{5} a + 3004975022826 − 5 9 2 8 5 8 8 3 4 9 4 5 7 8 a + 3 0 0 4 9 7 5 0 2 2 8 2 6
[ 0 \bigl[0 [ 0 , − ϕ − 1 -\phi - 1 − ϕ − 1 , 0 0 0 , 196 ϕ − 224 196 \phi - 224 1 9 6 ϕ − 2 2 4 , − 1308 ϕ + 1704 ] -1308 \phi + 1704\bigr] − 1 3 0 8 ϕ + 1 7 0 4 ]
y 2 = x 3 + ( − ϕ − 1 ) x 2 + ( 196 ϕ − 224 ) x − 1308 ϕ + 1704 {y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(196\phi-224\right){x}-1308\phi+1704 y 2 = x 3 + ( − ϕ − 1 ) x 2 + ( 1 9 6 ϕ − 2 2 4 ) x − 1 3 0 8 ϕ + 1 7 0 4
1280.1-e3
1280.1-e
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 20 ⋅ 5 4 2^{20} \cdot 5^{4} 2 2 0 ⋅ 5 4
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
0.347404686 0.347404686 0 . 3 4 7 4 0 4 6 8 6
10.46826027 10.46826027 1 0 . 4 6 8 2 6 0 2 7
1.626391824
− 22755876 25 a + 36900584 25 -\frac{22755876}{25} a + \frac{36900584}{25} − 2 5 2 2 7 5 5 8 7 6 a + 2 5 3 6 9 0 0 5 8 4
[ 0 \bigl[0 [ 0 , − ϕ − 1 -\phi - 1 − ϕ − 1 , 0 0 0 , − 4 ϕ − 24 -4 \phi - 24 − 4 ϕ − 2 4 , − 28 ϕ + 24 ] -28 \phi + 24\bigr] − 2 8 ϕ + 2 4 ]
y 2 = x 3 + ( − ϕ − 1 ) x 2 + ( − 4 ϕ − 24 ) x − 28 ϕ + 24 {y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-4\phi-24\right){x}-28\phi+24 y 2 = x 3 + ( − ϕ − 1 ) x 2 + ( − 4 ϕ − 2 4 ) x − 2 8 ϕ + 2 4
1280.1-e4
1280.1-e
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 2 2^{16} \cdot 5^{2} 2 1 6 ⋅ 5 2
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
0.173702343 0.173702343 0 . 1 7 3 7 0 2 3 4 3
20.93652055 20.93652055 2 0 . 9 3 6 5 2 0 5 5
1.626391824
53328 5 a + 8912 \frac{53328}{5} a + 8912 5 5 3 3 2 8 a + 8 9 1 2
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , 4 ϕ − 8 4 \phi - 8 4 ϕ − 8 , − 4 ϕ + 8 ] -4 \phi + 8\bigr] − 4 ϕ + 8 ]
y 2 = x 3 − x 2 + ( 4 ϕ − 8 ) x − 4 ϕ + 8 {y}^2={x}^{3}-{x}^{2}+\left(4\phi-8\right){x}-4\phi+8 y 2 = x 3 − x 2 + ( 4 ϕ − 8 ) x − 4 ϕ + 8
1280.1-e5
1280.1-e
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
− 2 22 ⋅ 5 8 - 2^{22} \cdot 5^{8} − 2 2 2 ⋅ 5 8
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
0.694809372 0.694809372 0 . 6 9 4 8 0 9 3 7 2
2.617065069 2.617065069 2 . 6 1 7 0 6 5 0 6 9
1.626391824
1613607658 625 a + 996757382 625 \frac{1613607658}{625} a + \frac{996757382}{625} 6 2 5 1 6 1 3 6 0 7 6 5 8 a + 6 2 5 9 9 6 7 5 7 3 8 2
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , 24 ϕ − 108 24 \phi - 108 2 4 ϕ − 1 0 8 , − 524 ϕ + 648 ] -524 \phi + 648\bigr] − 5 2 4 ϕ + 6 4 8 ]
y 2 = x 3 − x 2 + ( 24 ϕ − 108 ) x − 524 ϕ + 648 {y}^2={x}^{3}-{x}^{2}+\left(24\phi-108\right){x}-524\phi+648 y 2 = x 3 − x 2 + ( 2 4 ϕ − 1 0 8 ) x − 5 2 4 ϕ + 6 4 8
1280.1-e6
1280.1-e
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 20 ⋅ 5 2^{20} \cdot 5 2 2 0 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2
0.347404686 0.347404686 0 . 3 4 7 4 0 4 6 8 6
10.46826027 10.46826027 1 0 . 4 6 8 2 6 0 2 7
1.626391824
1444495316 5 a + 893013832 5 \frac{1444495316}{5} a + \frac{893013832}{5} 5 1 4 4 4 4 9 5 3 1 6 a + 5 8 9 3 0 1 3 8 3 2
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , 24 ϕ − 68 24 \phi - 68 2 4 ϕ − 6 8 , 148 ϕ − 168 ] 148 \phi - 168\bigr] 1 4 8 ϕ − 1 6 8 ]
y 2 = x 3 − x 2 + ( 24 ϕ − 68 ) x + 148 ϕ − 168 {y}^2={x}^{3}-{x}^{2}+\left(24\phi-68\right){x}+148\phi-168 y 2 = x 3 − x 2 + ( 2 4 ϕ − 6 8 ) x + 1 4 8 ϕ − 1 6 8
1280.1-f1
1280.1-f
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 12 2^{16} \cdot 5^{12} 2 1 6 ⋅ 5 1 2
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 2 2
1 1 1
5.171827352 5.171827352 5 . 1 7 1 8 2 7 3 5 2
1.156455752
− 20720464 15625 -\frac{20720464}{15625} − 1 5 6 2 5 2 0 7 2 0 4 6 4
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , − 36 -36 − 3 6 , 140 ] 140\bigr] 1 4 0 ]
y 2 = x 3 − x 2 − 36 x + 140 {y}^2={x}^{3}-{x}^{2}-36{x}+140 y 2 = x 3 − x 2 − 3 6 x + 1 4 0
1280.1-f2
1280.1-f
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 4 2^{16} \cdot 5^{4} 2 1 6 ⋅ 5 4
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 2 2
1 1 1
5.171827352 5.171827352 5 . 1 7 1 8 2 7 3 5 2
1.156455752
21296 25 \frac{21296}{25} 2 5 2 1 2 9 6
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , 4 4 4 , − 4 ] -4\bigr] − 4 ]
y 2 = x 3 − x 2 + 4 x − 4 {y}^2={x}^{3}-{x}^{2}+4{x}-4 y 2 = x 3 − x 2 + 4 x − 4
1280.1-f3
1280.1-f
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 3 2^{16} \cdot 5^{3} 2 1 6 ⋅ 5 3
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
10.34365470 10.34365470 1 0 . 3 4 3 6 5 4 7 0
1.156455752
− 170403887082176 25 a + 275719281184688 25 -\frac{170403887082176}{25} a + \frac{275719281184688}{25} − 2 5 1 7 0 4 0 3 8 8 7 0 8 2 1 7 6 a + 2 5 2 7 5 7 1 9 2 8 1 1 8 4 6 8 8
[ 0 \bigl[0 [ 0 , − ϕ − 1 -\phi - 1 − ϕ − 1 , 0 0 0 , − 98 ϕ − 157 -98 \phi - 157 − 9 8 ϕ − 1 5 7 , 563 ϕ + 725 ] 563 \phi + 725\bigr] 5 6 3 ϕ + 7 2 5 ]
y 2 = x 3 + ( − ϕ − 1 ) x 2 + ( − 98 ϕ − 157 ) x + 563 ϕ + 725 {y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-98\phi-157\right){x}+563\phi+725 y 2 = x 3 + ( − ϕ − 1 ) x 2 + ( − 9 8 ϕ − 1 5 7 ) x + 5 6 3 ϕ + 7 2 5
1280.1-f4
1280.1-f
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 8 ⋅ 5 2 2^{8} \cdot 5^{2} 2 8 ⋅ 5 2
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
2 2 2
1 1 1
20.68730941 20.68730941 2 0 . 6 8 7 3 0 9 4 1
1.156455752
16384 5 \frac{16384}{5} 5 1 6 3 8 4
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 − x 2 − x {y}^2={x}^{3}-{x}^{2}-{x} y 2 = x 3 − x 2 − x
1280.1-f5
1280.1-f
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 2^{16} \cdot 5 2 1 6 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
10.34365470 10.34365470 1 0 . 3 4 3 6 5 4 7 0
1.156455752
− 13352896 5 a + 21733168 5 -\frac{13352896}{5} a + \frac{21733168}{5} − 5 1 3 3 5 2 8 9 6 a + 5 2 1 7 3 3 1 6 8
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , 5 ϕ − 16 5 \phi - 16 5 ϕ − 1 6 , 17 ϕ − 16 ] 17 \phi - 16\bigr] 1 7 ϕ − 1 6 ]
y 2 = x 3 − x 2 + ( 5 ϕ − 16 ) x + 17 ϕ − 16 {y}^2={x}^{3}-{x}^{2}+\left(5\phi-16\right){x}+17\phi-16 y 2 = x 3 − x 2 + ( 5 ϕ − 1 6 ) x + 1 7 ϕ − 1 6
1280.1-f6
1280.1-f
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 8 ⋅ 5 6 2^{8} \cdot 5^{6} 2 8 ⋅ 5 6
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
2 2 2
1 1 1
20.68730941 20.68730941 2 0 . 6 8 7 3 0 9 4 1
1.156455752
488095744 125 \frac{488095744}{125} 1 2 5 4 8 8 0 9 5 7 4 4
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , − 41 -41 − 4 1 , 116 ] 116\bigr] 1 1 6 ]
y 2 = x 3 − x 2 − 41 x + 116 {y}^2={x}^{3}-{x}^{2}-41{x}+116 y 2 = x 3 − x 2 − 4 1 x + 1 1 6
1280.1-f7
1280.1-f
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 2^{16} \cdot 5 2 1 6 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
10.34365470 10.34365470 1 0 . 3 4 3 6 5 4 7 0
1.156455752
13352896 5 a + 8380272 5 \frac{13352896}{5} a + \frac{8380272}{5} 5 1 3 3 5 2 8 9 6 a + 5 8 3 8 0 2 7 2
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , − 5 ϕ − 11 -5 \phi - 11 − 5 ϕ − 1 1 , − 17 ϕ + 1 ] -17 \phi + 1\bigr] − 1 7 ϕ + 1 ]
y 2 = x 3 − x 2 + ( − 5 ϕ − 11 ) x − 17 ϕ + 1 {y}^2={x}^{3}-{x}^{2}+\left(-5\phi-11\right){x}-17\phi+1 y 2 = x 3 − x 2 + ( − 5 ϕ − 1 1 ) x − 1 7 ϕ + 1
1280.1-f8
1280.1-f
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 3 2^{16} \cdot 5^{3} 2 1 6 ⋅ 5 3
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
1 1 1
1 1 1
10.34365470 10.34365470 1 0 . 3 4 3 6 5 4 7 0
1.156455752
170403887082176 25 a + 105315394102512 25 \frac{170403887082176}{25} a + \frac{105315394102512}{25} 2 5 1 7 0 4 0 3 8 8 7 0 8 2 1 7 6 a + 2 5 1 0 5 3 1 5 3 9 4 1 0 2 5 1 2
[ 0 \bigl[0 [ 0 , ϕ + 1 \phi + 1 ϕ + 1 , 0 0 0 , 100 ϕ − 256 100 \phi - 256 1 0 0 ϕ − 2 5 6 , − 464 ϕ + 1032 ] -464 \phi + 1032\bigr] − 4 6 4 ϕ + 1 0 3 2 ]
y 2 = x 3 + ( ϕ + 1 ) x 2 + ( 100 ϕ − 256 ) x − 464 ϕ + 1032 {y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(100\phi-256\right){x}-464\phi+1032 y 2 = x 3 + ( ϕ + 1 ) x 2 + ( 1 0 0 ϕ − 2 5 6 ) x − 4 6 4 ϕ + 1 0 3 2
1280.1-g1
1280.1-g
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
1 1 1
1 1 1
12.96909401 12.96909401 1 2 . 9 6 9 0 9 4 0 1
1.449988790
− 2816 5 a + 4608 5 -\frac{2816}{5} a + \frac{4608}{5} − 5 2 8 1 6 a + 5 4 6 0 8
[ 0 \bigl[0 [ 0 , ϕ \phi ϕ , 0 0 0 , 1 1 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + ϕ x 2 + x {y}^2={x}^{3}+\phi{x}^{2}+{x} y 2 = x 3 + ϕ x 2 + x
1280.1-g2
1280.1-g
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
− 2 22 ⋅ 5 2 - 2^{22} \cdot 5^{2} − 2 2 2 ⋅ 5 2
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
6.484547005 6.484547005 6 . 4 8 4 5 4 7 0 0 5
1.449988790
− 9285883494578 5 a + 3004975022826 -\frac{9285883494578}{5} a + 3004975022826 − 5 9 2 8 5 8 8 3 4 9 4 5 7 8 a + 3 0 0 4 9 7 5 0 2 2 8 2 6
[ 0 \bigl[0 [ 0 , − ϕ + 1 -\phi + 1 − ϕ + 1 , 0 0 0 , 165 ϕ − 29 165 \phi - 29 1 6 5 ϕ − 2 9 , 379 ϕ + 746 ] 379 \phi + 746\bigr] 3 7 9 ϕ + 7 4 6 ]
y 2 = x 3 + ( − ϕ + 1 ) x 2 + ( 165 ϕ − 29 ) x + 379 ϕ + 746 {y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(165\phi-29\right){x}+379\phi+746 y 2 = x 3 + ( − ϕ + 1 ) x 2 + ( 1 6 5 ϕ − 2 9 ) x + 3 7 9 ϕ + 7 4 6
1280.1-g3
1280.1-g
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 20 ⋅ 5 4 2^{20} \cdot 5^{4} 2 2 0 ⋅ 5 4
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
12.96909401 12.96909401 1 2 . 9 6 9 0 9 4 0 1
1.449988790
− 22755876 25 a + 36900584 25 -\frac{22755876}{25} a + \frac{36900584}{25} − 2 5 2 2 7 5 5 8 7 6 a + 2 5 3 6 9 0 0 5 8 4
[ 0 \bigl[0 [ 0 , ϕ \phi ϕ , 0 0 0 , 20 ϕ − 44 20 \phi - 44 2 0 ϕ − 4 4 , − 76 ϕ + 128 ] -76 \phi + 128\bigr] − 7 6 ϕ + 1 2 8 ]
y 2 = x 3 + ϕ x 2 + ( 20 ϕ − 44 ) x − 76 ϕ + 128 {y}^2={x}^{3}+\phi{x}^{2}+\left(20\phi-44\right){x}-76\phi+128 y 2 = x 3 + ϕ x 2 + ( 2 0 ϕ − 4 4 ) x − 7 6 ϕ + 1 2 8
1280.1-g4
1280.1-g
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 16 ⋅ 5 2 2^{16} \cdot 5^{2} 2 1 6 ⋅ 5 2
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 2 2^{2} 2 2
1 1 1
12.96909401 12.96909401 1 2 . 9 6 9 0 9 4 0 1
1.449988790
53328 5 a + 8912 \frac{53328}{5} a + 8912 5 5 3 3 2 8 a + 8 9 1 2
[ 0 \bigl[0 [ 0 , ϕ \phi ϕ , 0 0 0 , − 4 -4 − 4 , − 4 ϕ ] -4 \phi\bigr] − 4 ϕ ]
y 2 = x 3 + ϕ x 2 − 4 x − 4 ϕ {y}^2={x}^{3}+\phi{x}^{2}-4{x}-4\phi y 2 = x 3 + ϕ x 2 − 4 x − 4 ϕ
1280.1-g5
1280.1-g
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
− 2 22 ⋅ 5 8 - 2^{22} \cdot 5^{8} − 2 2 2 ⋅ 5 8
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 8 Z \Z/8\Z Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 5 2^{5} 2 5
1 1 1
6.484547005 6.484547005 6 . 4 8 4 5 4 7 0 0 5
1.449988790
1613607658 625 a + 996757382 625 \frac{1613607658}{625} a + \frac{996757382}{625} 6 2 5 1 6 1 3 6 0 7 6 5 8 a + 6 2 5 9 9 6 7 5 7 3 8 2
[ 0 \bigl[0 [ 0 , ϕ \phi ϕ , 0 0 0 , − 60 ϕ − 84 -60 \phi - 84 − 6 0 ϕ − 8 4 , 276 ϕ + 400 ] 276 \phi + 400\bigr] 2 7 6 ϕ + 4 0 0 ]
y 2 = x 3 + ϕ x 2 + ( − 60 ϕ − 84 ) x + 276 ϕ + 400 {y}^2={x}^{3}+\phi{x}^{2}+\left(-60\phi-84\right){x}+276\phi+400 y 2 = x 3 + ϕ x 2 + ( − 6 0 ϕ − 8 4 ) x + 2 7 6 ϕ + 4 0 0
1280.1-g6
1280.1-g
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 20 ⋅ 5 2^{20} \cdot 5 2 2 0 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
3.242273502 3.242273502 3 . 2 4 2 2 7 3 5 0 2
1.449988790
1444495316 5 a + 893013832 5 \frac{1444495316}{5} a + \frac{893013832}{5} 5 1 4 4 4 4 9 5 3 1 6 a + 5 8 9 3 0 1 3 8 3 2
[ 0 \bigl[0 [ 0 , ϕ \phi ϕ , 0 0 0 , − 20 ϕ − 44 -20 \phi - 44 − 2 0 ϕ − 4 4 , − 108 ϕ − 128 ] -108 \phi - 128\bigr] − 1 0 8 ϕ − 1 2 8 ]
y 2 = x 3 + ϕ x 2 + ( − 20 ϕ − 44 ) x − 108 ϕ − 128 {y}^2={x}^{3}+\phi{x}^{2}+\left(-20\phi-44\right){x}-108\phi-128 y 2 = x 3 + ϕ x 2 + ( − 2 0 ϕ − 4 4 ) x − 1 0 8 ϕ − 1 2 8
1280.1-h1
1280.1-h
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
− 2 22 ⋅ 5 8 - 2^{22} \cdot 5^{8} − 2 2 2 ⋅ 5 8
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
0.694809372 0.694809372 0 . 6 9 4 8 0 9 3 7 2
2.617065069 2.617065069 2 . 6 1 7 0 6 5 0 6 9
1.626391824
− 1613607658 625 a + 522073008 125 -\frac{1613607658}{625} a + \frac{522073008}{125} − 6 2 5 1 6 1 3 6 0 7 6 5 8 a + 1 2 5 5 2 2 0 7 3 0 0 8
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , − 24 ϕ − 84 -24 \phi - 84 − 2 4 ϕ − 8 4 , 524 ϕ + 124 ] 524 \phi + 124\bigr] 5 2 4 ϕ + 1 2 4 ]
y 2 = x 3 − x 2 + ( − 24 ϕ − 84 ) x + 524 ϕ + 124 {y}^2={x}^{3}-{x}^{2}+\left(-24\phi-84\right){x}+524\phi+124 y 2 = x 3 − x 2 + ( − 2 4 ϕ − 8 4 ) x + 5 2 4 ϕ + 1 2 4
1280.1-h2
1280.1-h
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1280.1
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
2 8 ⋅ 5 2^{8} \cdot 5 2 8 ⋅ 5
1.19516 1.19516 1 . 1 9 5 1 6
( − 2 a + 1 ) , ( 2 ) (-2a+1), (2) ( − 2 a + 1 ) , ( 2 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
1 1 1
0.347404686 0.347404686 0 . 3 4 7 4 0 4 6 8 6
20.93652055 20.93652055 2 0 . 9 3 6 5 2 0 5 5
1.626391824
2816 5 a + 1792 5 \frac{2816}{5} a + \frac{1792}{5} 5 2 8 1 6 a + 5 1 7 9 2
[ 0 \bigl[0 [ 0 , ϕ + 1 \phi + 1 ϕ + 1 , 0 0 0 , ϕ + 1 \phi + 1 ϕ + 1 , 1 ] 1\bigr] 1 ]
y 2 = x 3 + ( ϕ + 1 ) x 2 + ( ϕ + 1 ) x + 1 {y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(\phi+1\right){x}+1 y 2 = x 3 + ( ϕ + 1 ) x 2 + ( ϕ + 1 ) x + 1