Learn more

Refine search


Results (1-50 of 84 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1280.1-a1 1280.1-a \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.498444490$ 1.340249496 \( -\frac{1565563717889316}{5} a + \frac{2533135307076378}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 173 \phi - 547\) , \( 3764 \phi - 4110\bigr] \) ${y}^2={x}^{3}+\left(173\phi-547\right){x}+3764\phi-4110$
1280.1-a2 1280.1-a \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.98755592$ 1.340249496 \( -\frac{237035808}{5} a + \frac{383532624}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 8 \phi - 7\) , \( -16 \phi + 6\bigr] \) ${y}^2={x}^{3}+\left(8\phi-7\right){x}-16\phi+6$
1280.1-a3 1280.1-a \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.996888981$ 1.340249496 \( \frac{237276}{625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 13 \phi + 13\) , \( 68 \phi + 34\bigr] \) ${y}^2={x}^{3}+\left(13\phi+13\right){x}+68\phi+34$
1280.1-a4 1280.1-a \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.98755592$ 1.340249496 \( \frac{148176}{25} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -7 \phi - 7\) , \( 12 \phi + 6\bigr] \) ${y}^2={x}^{3}+\left(-7\phi-7\right){x}+12\phi+6$
1280.1-a5 1280.1-a \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $23.97511185$ 1.340249496 \( \frac{55296}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 2 \phi - 4\) , \( -2 \phi + 3\bigr] \) ${y}^2={x}^{3}+\left(2\phi-4\right){x}-2\phi+3$
1280.1-a6 1280.1-a \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.993777963$ 1.340249496 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -107 \phi - 107\) , \( 852 \phi + 426\bigr] \) ${y}^2={x}^{3}+\left(-107\phi-107\right){x}+852\phi+426$
1280.1-a7 1280.1-a \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.993777963$ 1.340249496 \( \frac{237035808}{5} a + \frac{146496816}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -8 \phi + 1\) , \( -16 \phi + 10\bigr] \) ${y}^2={x}^{3}+\left(-8\phi+1\right){x}-16\phi+10$
1280.1-a8 1280.1-a \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.996888981$ 1.340249496 \( \frac{1565563717889316}{5} a + \frac{967571589187062}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -173 \phi - 374\) , \( 3764 \phi + 346\bigr] \) ${y}^2={x}^{3}+\left(-173\phi-374\right){x}+3764\phi+346$
1280.1-b1 1280.1-b \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $6.484547005$ 1.449988790 \( -\frac{1613607658}{625} a + \frac{522073008}{125} \) \( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( 60 \phi - 144\) , \( -276 \phi + 676\bigr] \) ${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(60\phi-144\right){x}-276\phi+676$
1280.1-b2 1280.1-b \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.96909401$ 1.449988790 \( \frac{2816}{5} a + \frac{1792}{5} \) \( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+{x}$
1280.1-b3 1280.1-b \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.96909401$ 1.449988790 \( -\frac{53328}{5} a + \frac{97888}{5} \) \( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( -4\) , \( 4 \phi - 4\bigr] \) ${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}-4{x}+4\phi-4$
1280.1-b4 1280.1-b \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.242273502$ 1.449988790 \( -\frac{1444495316}{5} a + \frac{2337509148}{5} \) \( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( 20 \phi - 64\) , \( 108 \phi - 236\bigr] \) ${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(20\phi-64\right){x}+108\phi-236$
1280.1-b5 1280.1-b \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $12.96909401$ 1.449988790 \( \frac{22755876}{25} a + \frac{14144708}{25} \) \( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( -20 \phi - 24\) , \( 76 \phi + 52\bigr] \) ${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-20\phi-24\right){x}+76\phi+52$
1280.1-b6 1280.1-b \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $6.484547005$ 1.449988790 \( \frac{9285883494578}{5} a + \frac{5738991619552}{5} \) \( \bigl[0\) , \( \phi\) , \( 0\) , \( -165 \phi + 136\) , \( -379 \phi + 1125\bigr] \) ${y}^2={x}^{3}+\phi{x}^{2}+\left(-165\phi+136\right){x}-379\phi+1125$
1280.1-c1 1280.1-c \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.804604675$ 1.254257341 \( -\frac{1613607658}{625} a + \frac{522073008}{125} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -24 \phi - 84\) , \( -524 \phi - 124\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-24\phi-84\right){x}-524\phi-124$
1280.1-c2 1280.1-c \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.21841870$ 1.254257341 \( \frac{2816}{5} a + \frac{1792}{5} \) \( \bigl[0\) , \( -\phi - 1\) , \( 0\) , \( \phi + 1\) , \( -1\bigr] \) ${y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(\phi+1\right){x}-1$
1280.1-c3 1280.1-c \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.21841870$ 1.254257341 \( -\frac{53328}{5} a + \frac{97888}{5} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -4 \phi - 4\) , \( -4 \phi - 4\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-4\phi-4\right){x}-4\phi-4$
1280.1-c4 1280.1-c \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.609209351$ 1.254257341 \( -\frac{1444495316}{5} a + \frac{2337509148}{5} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -24 \phi - 44\) , \( 148 \phi + 20\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-24\phi-44\right){x}+148\phi+20$
1280.1-c5 1280.1-c \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.609209351$ 1.254257341 \( \frac{22755876}{25} a + \frac{14144708}{25} \) \( \bigl[0\) , \( -\phi - 1\) , \( 0\) , \( 6 \phi - 29\) , \( -33 \phi + 33\bigr] \) ${y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(6\phi-29\right){x}-33\phi+33$
1280.1-c6 1280.1-c \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.402302337$ 1.254257341 \( \frac{9285883494578}{5} a + \frac{5738991619552}{5} \) \( \bigl[0\) , \( -\phi - 1\) , \( 0\) , \( -194 \phi - 29\) , \( -1113 \phi - 367\bigr] \) ${y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-194\phi-29\right){x}-1113\phi-367$
1280.1-d1 1280.1-d \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.141031885$ 1.436247851 \( -\frac{20720464}{15625} \) \( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( 36 \phi - 72\) , \( -280 \phi + 420\bigr] \) ${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(36\phi-72\right){x}-280\phi+420$
1280.1-d2 1280.1-d \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $6.423095656$ 1.436247851 \( \frac{21296}{25} \) \( \bigl[0\) , \( \phi\) , \( 0\) , \( 4 \phi + 4\) , \( 8 \phi + 4\bigr] \) ${y}^2={x}^{3}+\phi{x}^{2}+\left(4\phi+4\right){x}+8\phi+4$
1280.1-d3 1280.1-d \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $8.564127542$ 1.436247851 \( -\frac{170403887082176}{25} a + \frac{275719281184688}{25} \) \( \bigl[0\) , \( \phi\) , \( 0\) , \( 59 \phi - 216\) , \( -887 \phi + 1049\bigr] \) ${y}^2={x}^{3}+\phi{x}^{2}+\left(59\phi-216\right){x}-887\phi+1049$
1280.1-d4 1280.1-d \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $25.69238262$ 1.436247851 \( \frac{16384}{5} \) \( \bigl[0\) , \( \phi\) , \( 0\) , \( -\phi - 1\) , \( 0\bigr] \) ${y}^2={x}^{3}+\phi{x}^{2}+\left(-\phi-1\right){x}$
1280.1-d5 1280.1-d \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.423095656$ 1.436247851 \( -\frac{13352896}{5} a + \frac{21733168}{5} \) \( \bigl[0\) , \( \phi\) , \( 0\) , \( -6 \phi - 11\) , \( -19 \phi - 18\bigr] \) ${y}^2={x}^{3}+\phi{x}^{2}+\left(-6\phi-11\right){x}-19\phi-18$
1280.1-d6 1280.1-d \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.564127542$ 1.436247851 \( \frac{488095744}{125} \) \( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( 41 \phi - 82\) , \( -232 \phi + 348\bigr] \) ${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(41\phi-82\right){x}-232\phi+348$
1280.1-d7 1280.1-d \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $25.69238262$ 1.436247851 \( \frac{13352896}{5} a + \frac{8380272}{5} \) \( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( 6 \phi - 17\) , \( -19 \phi + 37\bigr] \) ${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(6\phi-17\right){x}-19\phi+37$
1280.1-d8 1280.1-d \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.141031885$ 1.436247851 \( \frac{170403887082176}{25} a + \frac{105315394102512}{25} \) \( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( -59 \phi - 157\) , \( -887 \phi - 162\bigr] \) ${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(-59\phi-157\right){x}-887\phi-162$
1280.1-e1 1280.1-e \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.347404686$ $20.93652055$ 1.626391824 \( -\frac{2816}{5} a + \frac{4608}{5} \) \( \bigl[0\) , \( -\phi - 1\) , \( 0\) , \( \phi + 1\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(\phi+1\right){x}$
1280.1-e2 1280.1-e \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.173702343$ $5.234130138$ 1.626391824 \( -\frac{9285883494578}{5} a + 3004975022826 \) \( \bigl[0\) , \( -\phi - 1\) , \( 0\) , \( 196 \phi - 224\) , \( -1308 \phi + 1704\bigr] \) ${y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(196\phi-224\right){x}-1308\phi+1704$
1280.1-e3 1280.1-e \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.347404686$ $10.46826027$ 1.626391824 \( -\frac{22755876}{25} a + \frac{36900584}{25} \) \( \bigl[0\) , \( -\phi - 1\) , \( 0\) , \( -4 \phi - 24\) , \( -28 \phi + 24\bigr] \) ${y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-4\phi-24\right){x}-28\phi+24$
1280.1-e4 1280.1-e \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.173702343$ $20.93652055$ 1.626391824 \( \frac{53328}{5} a + 8912 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 4 \phi - 8\) , \( -4 \phi + 8\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(4\phi-8\right){x}-4\phi+8$
1280.1-e5 1280.1-e \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.694809372$ $2.617065069$ 1.626391824 \( \frac{1613607658}{625} a + \frac{996757382}{625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 24 \phi - 108\) , \( -524 \phi + 648\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(24\phi-108\right){x}-524\phi+648$
1280.1-e6 1280.1-e \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.347404686$ $10.46826027$ 1.626391824 \( \frac{1444495316}{5} a + \frac{893013832}{5} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 24 \phi - 68\) , \( 148 \phi - 168\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(24\phi-68\right){x}+148\phi-168$
1280.1-f1 1280.1-f \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.171827352$ 1.156455752 \( -\frac{20720464}{15625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -36\) , \( 140\bigr] \) ${y}^2={x}^{3}-{x}^{2}-36{x}+140$
1280.1-f2 1280.1-f \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.171827352$ 1.156455752 \( \frac{21296}{25} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 4\) , \( -4\bigr] \) ${y}^2={x}^{3}-{x}^{2}+4{x}-4$
1280.1-f3 1280.1-f \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.34365470$ 1.156455752 \( -\frac{170403887082176}{25} a + \frac{275719281184688}{25} \) \( \bigl[0\) , \( -\phi - 1\) , \( 0\) , \( -98 \phi - 157\) , \( 563 \phi + 725\bigr] \) ${y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-98\phi-157\right){x}+563\phi+725$
1280.1-f4 1280.1-f \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $20.68730941$ 1.156455752 \( \frac{16384}{5} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}-{x}$
1280.1-f5 1280.1-f \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.34365470$ 1.156455752 \( -\frac{13352896}{5} a + \frac{21733168}{5} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 5 \phi - 16\) , \( 17 \phi - 16\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(5\phi-16\right){x}+17\phi-16$
1280.1-f6 1280.1-f \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $20.68730941$ 1.156455752 \( \frac{488095744}{125} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -41\) , \( 116\bigr] \) ${y}^2={x}^{3}-{x}^{2}-41{x}+116$
1280.1-f7 1280.1-f \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.34365470$ 1.156455752 \( \frac{13352896}{5} a + \frac{8380272}{5} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -5 \phi - 11\) , \( -17 \phi + 1\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-5\phi-11\right){x}-17\phi+1$
1280.1-f8 1280.1-f \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.34365470$ 1.156455752 \( \frac{170403887082176}{25} a + \frac{105315394102512}{25} \) \( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( 100 \phi - 256\) , \( -464 \phi + 1032\bigr] \) ${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(100\phi-256\right){x}-464\phi+1032$
1280.1-g1 1280.1-g \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.96909401$ 1.449988790 \( -\frac{2816}{5} a + \frac{4608}{5} \) \( \bigl[0\) , \( \phi\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^{3}+\phi{x}^{2}+{x}$
1280.1-g2 1280.1-g \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $6.484547005$ 1.449988790 \( -\frac{9285883494578}{5} a + 3004975022826 \) \( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( 165 \phi - 29\) , \( 379 \phi + 746\bigr] \) ${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(165\phi-29\right){x}+379\phi+746$
1280.1-g3 1280.1-g \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $12.96909401$ 1.449988790 \( -\frac{22755876}{25} a + \frac{36900584}{25} \) \( \bigl[0\) , \( \phi\) , \( 0\) , \( 20 \phi - 44\) , \( -76 \phi + 128\bigr] \) ${y}^2={x}^{3}+\phi{x}^{2}+\left(20\phi-44\right){x}-76\phi+128$
1280.1-g4 1280.1-g \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.96909401$ 1.449988790 \( \frac{53328}{5} a + 8912 \) \( \bigl[0\) , \( \phi\) , \( 0\) , \( -4\) , \( -4 \phi\bigr] \) ${y}^2={x}^{3}+\phi{x}^{2}-4{x}-4\phi$
1280.1-g5 1280.1-g \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $6.484547005$ 1.449988790 \( \frac{1613607658}{625} a + \frac{996757382}{625} \) \( \bigl[0\) , \( \phi\) , \( 0\) , \( -60 \phi - 84\) , \( 276 \phi + 400\bigr] \) ${y}^2={x}^{3}+\phi{x}^{2}+\left(-60\phi-84\right){x}+276\phi+400$
1280.1-g6 1280.1-g \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.242273502$ 1.449988790 \( \frac{1444495316}{5} a + \frac{893013832}{5} \) \( \bigl[0\) , \( \phi\) , \( 0\) , \( -20 \phi - 44\) , \( -108 \phi - 128\bigr] \) ${y}^2={x}^{3}+\phi{x}^{2}+\left(-20\phi-44\right){x}-108\phi-128$
1280.1-h1 1280.1-h \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.694809372$ $2.617065069$ 1.626391824 \( -\frac{1613607658}{625} a + \frac{522073008}{125} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -24 \phi - 84\) , \( 524 \phi + 124\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-24\phi-84\right){x}+524\phi+124$
1280.1-h2 1280.1-h \(\Q(\sqrt{5}) \) \( 2^{8} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.347404686$ $20.93652055$ 1.626391824 \( \frac{2816}{5} a + \frac{1792}{5} \) \( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( \phi + 1\) , \( 1\bigr] \) ${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(\phi+1\right){x}+1$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.