Base field \(\Q(\sqrt{5}) \)
Generator \(\phi\), with minimal polynomial \( x^{2} - x - 1 \); class number \(1\).
Elliptic curves in class 1280.1-f over \(\Q(\sqrt{5}) \)
Isogeny class 1280.1-f contains 8 curves linked by isogenies of degrees dividing 12.
Rank
Rank: \( 0 \)Isogeny matrix
\(\left(\begin{array}{rrrrrrrr} 1 & 3 & 4 & 6 & 12 & 2 & 12 & 4 \\ 3 & 1 & 12 & 2 & 4 & 6 & 4 & 12 \\ 4 & 12 & 1 & 6 & 12 & 2 & 3 & 4 \\ 6 & 2 & 6 & 1 & 2 & 3 & 2 & 6 \\ 12 & 4 & 12 & 2 & 1 & 6 & 4 & 3 \\ 2 & 6 & 2 & 3 & 6 & 1 & 6 & 2 \\ 12 & 4 & 3 & 2 & 4 & 6 & 1 & 12 \\ 4 & 12 & 4 & 6 & 3 & 2 & 12 & 1 \end{array}\right)\)