Base field \(\Q(\sqrt{10}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-10, 0, 1]))
gp: K = nfinit(Polrev([-10, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-10, 0, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,0]),K([1,0]),K([0,0]),K([-216,0]),K([-1296,0])])
gp: E = ellinit([Polrev([0,0]),Polrev([1,0]),Polrev([0,0]),Polrev([-216,0]),Polrev([-1296,0])], K);
magma: E := EllipticCurve([K![0,0],K![1,0],K![0,0],K![-216,0],K![-1296,0]]);
This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((-6a)\) | = | \((2,a)^{3}\cdot(3,a+1)\cdot(3,a+2)\cdot(5,a)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 360 \) | = | \(2^{3}\cdot3\cdot3\cdot5\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((829440)\) | = | \((2,a)^{22}\cdot(3,a+1)^{4}\cdot(3,a+2)^{4}\cdot(5,a)^{2}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 687970713600 \) | = | \(2^{22}\cdot3^{4}\cdot3^{4}\cdot5^{2}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
Minimal discriminant: | \((12960)\) | = | \((2,a)^{10}\cdot(3,a+1)^{4}\cdot(3,a+2)^{4}\cdot(5,a)^{2}\) |
Minimal discriminant norm: | \( 167961600 \) | = | \(2^{10}\cdot3^{4}\cdot3^{4}\cdot5^{2}\) |
j-invariant: | \( \frac{546718898}{405} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(0\) | |
Torsion structure: | \(\Z/2\Z\oplus\Z/2\Z\) | |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| ||
Torsion generators: | $\left(-9 : 0 : 1\right)$ | $\left(-4 a + 4 : 0 : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 3.0996025409841117391851328979534209808 \) | ||
Tamagawa product: | \( 64 \) = \(2\cdot2^{2}\cdot2^{2}\cdot2\) | ||
Torsion order: | \(4\) | ||
Leading coefficient: | \( 1.9603607741510399946163740304197364280 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
Primes of good reduction for the curve but which divide the
discriminant of the model above (if any) are included.
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((2,a)\) | \(2\) | \(2\) | \(III^{*}\) | Additive | \(1\) | \(3\) | \(10\) | \(0\) |
\((3,a+1)\) | \(3\) | \(4\) | \(I_{4}\) | Split multiplicative | \(-1\) | \(1\) | \(4\) | \(4\) |
\((3,a+2)\) | \(3\) | \(4\) | \(I_{4}\) | Split multiplicative | \(-1\) | \(1\) | \(4\) | \(4\) |
\((5,a)\) | \(5\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2Cs |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
360.1-b
consists of curves linked by isogenies of
degrees dividing 8.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 120.a1 |
\(\Q\) | 4800.bl1 |