Learn more

Refine search


Results (1-50 of 96 matches)

Next   Download to          
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
360.1-a1 360.1-a \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/4\Z$ $1$ $6.428566356$ 1.016445588 \( -\frac{62849152}{16875} a - \frac{198815248}{16875} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -4 a - 20\) , \( 40 a - 40\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-4a-20\right){x}+40a-40$
360.1-a2 360.1-a \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $0.401785397$ 1.016445588 \( \frac{20987609362339243}{1412147682405} a - \frac{13270225655923498}{282429536481} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 1316 a - 3920\) , \( 46864 a - 131320\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(1316a-3920\right){x}+46864a-131320$
360.1-a3 360.1-a \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $0.401785397$ 1.016445588 \( -\frac{46403344565504160322387}{3645} a + \frac{29348051975317917813034}{729} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 20276 a - 65520\) , \( 2831696 a - 8968120\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(20276a-65520\right){x}+2831696a-8968120$
360.1-a4 360.1-a \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $1.607141589$ 1.016445588 \( -\frac{3769942814012492}{2657205} a + \frac{11921672496636838}{2657205} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 1196 a - 4320\) , \( 44720 a - 136600\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(1196a-4320\right){x}+44720a-136600$
360.1-a5 360.1-a \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $6.428566356$ 1.016445588 \( \frac{1700618274992}{18225} a + \frac{5379567163076}{18225} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -4 a - 520\) , \( 1440 a + 360\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-4a-520\right){x}+1440a+360$
360.1-a6 360.1-a \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/4\Z$ $1$ $6.428566356$ 1.016445588 \( \frac{7436726031871174724}{135} a + \frac{23516992595379118094}{135} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -1204 a - 4720\) , \( 47760 a + 154920\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-1204a-4720\right){x}+47760a+154920$
360.1-b1 360.1-b \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $0.774900635$ 1.960360774 \( -\frac{9441678981290413}{32805} a + \frac{5971442099652584}{6561} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 520 a - 1816\) , \( 12288 a - 40656\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(520a-1816\right){x}+12288a-40656$
360.1-b2 360.1-b \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $12.39841016$ 1.960360774 \( \frac{21296}{15} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 4\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}+4{x}$
360.1-b3 360.1-b \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $12.39841016$ 1.960360774 \( \frac{470596}{225} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -16\) , \( -16\bigr] \) ${y}^2={x}^{3}+{x}^{2}-16{x}-16$
360.1-b4 360.1-b \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $12.39841016$ 1.960360774 \( \frac{136835858}{1875} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -136\) , \( 560\bigr] \) ${y}^2={x}^{3}+{x}^{2}-136{x}+560$
360.1-b5 360.1-b \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $3.099602540$ 1.960360774 \( \frac{546718898}{405} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -216\) , \( -1296\bigr] \) ${y}^2={x}^{3}+{x}^{2}-216{x}-1296$
360.1-b6 360.1-b \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $0.774900635$ 1.960360774 \( \frac{9441678981290413}{32805} a + \frac{5971442099652584}{6561} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -520 a - 1816\) , \( -12288 a - 40656\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-520a-1816\right){x}-12288a-40656$
360.1-c1 360.1-c \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $6.428566356$ 3.049336766 \( -\frac{62849152}{16875} a - \frac{198815248}{16875} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -a - 8\) , \( 4 a - 12\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-8\right){x}+4a-12$
360.1-c2 360.1-c \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $0.401785397$ 3.049336766 \( \frac{20987609362339243}{1412147682405} a - \frac{13270225655923498}{282429536481} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 329 a - 983\) , \( 6187 a - 17397\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(329a-983\right){x}+6187a-17397$
360.1-c3 360.1-c \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $0.401785397$ 3.049336766 \( -\frac{46403344565504160322387}{3645} a + \frac{29348051975317917813034}{729} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 5069 a - 16383\) , \( 359031 a - 1137397\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(5069a-16383\right){x}+359031a-1137397$
360.1-c4 360.1-c \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $1.607141589$ 3.049336766 \( -\frac{3769942814012492}{2657205} a + \frac{11921672496636838}{2657205} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 299 a - 1083\) , \( 5889 a - 18157\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(299a-1083\right){x}+5889a-18157$
360.1-c5 360.1-c \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $6.428566356$ 3.049336766 \( \frac{1700618274992}{18225} a + \frac{5379567163076}{18225} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -a - 133\) , \( 179 a - 87\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-133\right){x}+179a-87$
360.1-c6 360.1-c \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $6.428566356$ 3.049336766 \( \frac{7436726031871174724}{135} a + \frac{23516992595379118094}{135} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -301 a - 1183\) , \( 5669 a + 18183\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-301a-1183\right){x}+5669a+18183$
360.1-d1 360.1-d \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $3.830752227$ $0.853913179$ 4.137688294 \( -\frac{361462952968493}{1412147682405} a + \frac{1144863668511508}{1412147682405} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 3 a + 45\) , \( -1010 a - 3160\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(3a+45\right){x}-1010a-3160$
360.1-d2 360.1-d \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/4\Z$ $1.915376113$ $6.831305436$ 4.137688294 \( -\frac{83999141127976}{32805} a + \frac{53125728544790}{6561} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 33 a + 25\) , \( 36 a + 272\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(33a+25\right){x}+36a+272$
360.1-d3 360.1-d \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $0.957688056$ $13.66261087$ 4.137688294 \( -\frac{72219488}{3645} a + \frac{238191988}{3645} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -7 a - 25\) , \( 14 a + 42\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-7a-25\right){x}+14a+42$
360.1-d4 360.1-d \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.915376113$ $3.415652718$ 4.137688294 \( \frac{74541355592}{13286025} a + \frac{260191879754}{13286025} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -47 a - 155\) , \( -280 a - 900\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-47a-155\right){x}-280a-900$
360.1-d5 360.1-d \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/4\Z$ $1.915376113$ $27.32522174$ 4.137688294 \( \frac{71858432}{135} a + \frac{45446896}{27} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -7 a - 20\) , \( 17 a + 55\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-7a-20\right){x}+17a+55$
360.1-d6 360.1-d \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $3.830752227$ $0.853913179$ 4.137688294 \( \frac{96329443968049}{455625} a + \frac{304932190386604}{455625} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -737 a - 2435\) , \( -19486 a - 62208\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-737a-2435\right){x}-19486a-62208$
360.1-e1 360.1-e \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $2$ $\Z/2\Z$ $7.341818993$ $0.805807860$ 3.741667300 \( -\frac{27995042}{1171875} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -21\) , \( -321\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-21{x}-321$
360.1-e2 360.1-e \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $2$ $\Z/2\Z$ $0.458863687$ $3.223231443$ 3.741667300 \( \frac{54607676}{32805} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 19\) , \( 29\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+19{x}+29$
360.1-e3 360.1-e \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $0.458863687$ $12.89292577$ 3.741667300 \( \frac{3631696}{2025} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -6\) , \( -6\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-6{x}-6$
360.1-e4 360.1-e \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $1.835454748$ $3.223231443$ 3.741667300 \( \frac{868327204}{5625} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -51\) , \( -195\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-51{x}-195$
360.1-e5 360.1-e \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $2$ $\Z/4\Z$ $0.114715921$ $25.78585154$ 3.741667300 \( \frac{24918016}{45} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -61\) , \( 205\bigr] \) ${y}^2={x}^{3}-{x}^{2}-61{x}+205$
360.1-e6 360.1-e \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $2$ $\Z/2\Z$ $7.341818993$ $0.805807860$ 3.741667300 \( \frac{1770025017602}{75} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -801\) , \( -9645\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-801{x}-9645$
360.1-f1 360.1-f \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.628684938$ $25.87638347$ 5.144422567 \( -\frac{3038670848}{45} a + \frac{1921808384}{9} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 272 a - 861\) , \( -4256 a + 13459\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(272a-861\right){x}-4256a+13459$
360.1-f2 360.1-f \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.314342469$ $1.617273967$ 5.144422567 \( -\frac{271639577970482}{215233605} a + \frac{859184870946862}{215233605} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 697 a - 2203\) , \( 18367 a - 58077\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(697a-2203\right){x}+18367a-58077$
360.1-f3 360.1-f \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.157171234$ $6.469095868$ 5.144422567 \( -\frac{10124248}{164025} a + \frac{565311884}{164025} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 47 a - 153\) , \( 267 a - 847\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(47a-153\right){x}+267a-847$
360.1-f4 360.1-f \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.314342469$ $1.617273967$ 5.144422567 \( \frac{16306902826}{4100625} a + \frac{54629621786}{4100625} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -123 a + 377\) , \( 1383 a - 4393\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-123a+377\right){x}+1383a-4393$
360.1-f5 360.1-f \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.314342469$ $25.87638347$ 5.144422567 \( \frac{374412352}{405} a + \frac{1192670608}{405} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 17 a - 58\) , \( -52 a + 162\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(17a-58\right){x}-52a+162$
360.1-f6 360.1-f \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.628684938$ $12.93819173$ 5.144422567 \( \frac{244962045297848}{45} a + \frac{154927600687108}{9} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -13 a + 17\) , \( -259 a + 837\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-13a+17\right){x}-259a+837$
360.1-g1 360.1-g \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/4\Z$ $0.762890722$ $25.87638347$ 3.121302904 \( -\frac{3038670848}{45} a + \frac{1921808384}{9} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 68 a - 215\) , \( -566 a + 1790\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(68a-215\right){x}-566a+1790$
360.1-g2 360.1-g \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $1.525781445$ $1.617273967$ 3.121302904 \( -\frac{271639577970482}{215233605} a + \frac{859184870946862}{215233605} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 2788 a - 8800\) , \( 141360 a - 447000\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(2788a-8800\right){x}+141360a-447000$
360.1-g3 360.1-g \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.762890722$ $6.469095868$ 3.121302904 \( -\frac{10124248}{164025} a + \frac{565311884}{164025} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 188 a - 600\) , \( 1760 a - 5560\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(188a-600\right){x}+1760a-5560$
360.1-g4 360.1-g \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.381445361$ $1.617273967$ 3.121302904 \( \frac{16306902826}{4100625} a + \frac{54629621786}{4100625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -492 a + 1520\) , \( 12048 a - 38168\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-492a+1520\right){x}+12048a-38168$
360.1-g5 360.1-g \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $1.525781445$ $25.87638347$ 3.121302904 \( \frac{374412352}{405} a + \frac{1192670608}{405} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 68 a - 220\) , \( -552 a + 1752\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(68a-220\right){x}-552a+1752$
360.1-g6 360.1-g \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/4\Z$ $3.051562891$ $12.93819173$ 3.121302904 \( \frac{244962045297848}{45} a + \frac{154927600687108}{9} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -52 a + 80\) , \( -1968 a + 6552\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-52a+80\right){x}-1968a+6552$
360.1-h1 360.1-h \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.628684938$ $12.93819173$ 5.144422567 \( -\frac{244962045297848}{45} a + \frac{154927600687108}{9} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 13 a + 17\) , \( 259 a + 837\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(13a+17\right){x}+259a+837$
360.1-h2 360.1-h \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.314342469$ $1.617273967$ 5.144422567 \( -\frac{16306902826}{4100625} a + \frac{54629621786}{4100625} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 123 a + 377\) , \( -1383 a - 4393\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(123a+377\right){x}-1383a-4393$
360.1-h3 360.1-h \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.157171234$ $6.469095868$ 5.144422567 \( \frac{10124248}{164025} a + \frac{565311884}{164025} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -47 a - 153\) , \( -267 a - 847\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-47a-153\right){x}-267a-847$
360.1-h4 360.1-h \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.314342469$ $25.87638347$ 5.144422567 \( -\frac{374412352}{405} a + \frac{1192670608}{405} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -17 a - 58\) , \( 52 a + 162\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-17a-58\right){x}+52a+162$
360.1-h5 360.1-h \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.314342469$ $1.617273967$ 5.144422567 \( \frac{271639577970482}{215233605} a + \frac{859184870946862}{215233605} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -697 a - 2203\) , \( -18367 a - 58077\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-697a-2203\right){x}-18367a-58077$
360.1-h6 360.1-h \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.628684938$ $25.87638347$ 5.144422567 \( \frac{3038670848}{45} a + \frac{1921808384}{9} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -272 a - 861\) , \( 4256 a + 13459\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-272a-861\right){x}+4256a+13459$
360.1-i1 360.1-i \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $0.401785397$ 1.016445588 \( -\frac{20987609362339243}{1412147682405} a - \frac{13270225655923498}{282429536481} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -1316 a - 3920\) , \( -46864 a - 131320\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-1316a-3920\right){x}-46864a-131320$
360.1-i2 360.1-i \(\Q(\sqrt{10}) \) \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/4\Z$ $1$ $6.428566356$ 1.016445588 \( \frac{62849152}{16875} a - \frac{198815248}{16875} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 4 a - 20\) , \( -40 a - 40\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(4a-20\right){x}-40a-40$
Next   Download to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.