Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
360.1-a1 |
360.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{4} \cdot 5^{8} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$6.428566356$ |
1.016445588 |
\( -\frac{62849152}{16875} a - \frac{198815248}{16875} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -4 a - 20\) , \( 40 a - 40\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-4a-20\right){x}+40a-40$ |
360.1-a2 |
360.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{23} \cdot 3^{32} \cdot 5 \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$16$ |
\( 2^{2} \) |
$1$ |
$0.401785397$ |
1.016445588 |
\( \frac{20987609362339243}{1412147682405} a - \frac{13270225655923498}{282429536481} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 1316 a - 3920\) , \( 46864 a - 131320\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(1316a-3920\right){x}+46864a-131320$ |
360.1-a3 |
360.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{23} \cdot 3^{8} \cdot 5 \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$16$ |
\( 2^{2} \) |
$1$ |
$0.401785397$ |
1.016445588 |
\( -\frac{46403344565504160322387}{3645} a + \frac{29348051975317917813034}{729} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 20276 a - 65520\) , \( 2831696 a - 8968120\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(20276a-65520\right){x}+2831696a-8968120$ |
360.1-a4 |
360.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{22} \cdot 3^{16} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$4$ |
\( 2^{4} \) |
$1$ |
$1.607141589$ |
1.016445588 |
\( -\frac{3769942814012492}{2657205} a + \frac{11921672496636838}{2657205} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 1196 a - 4320\) , \( 44720 a - 136600\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(1196a-4320\right){x}+44720a-136600$ |
360.1-a5 |
360.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{20} \cdot 3^{8} \cdot 5^{4} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$6.428566356$ |
1.016445588 |
\( \frac{1700618274992}{18225} a + \frac{5379567163076}{18225} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -4 a - 520\) , \( 1440 a + 360\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-4a-520\right){x}+1440a+360$ |
360.1-a6 |
360.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{22} \cdot 3^{4} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$6.428566356$ |
1.016445588 |
\( \frac{7436726031871174724}{135} a + \frac{23516992595379118094}{135} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -1204 a - 4720\) , \( 47760 a + 154920\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-1204a-4720\right){x}+47760a+154920$ |
360.1-b1 |
360.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{23} \cdot 3^{10} \cdot 5 \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$1$ |
$0.774900635$ |
1.960360774 |
\( -\frac{9441678981290413}{32805} a + \frac{5971442099652584}{6561} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 520 a - 1816\) , \( 12288 a - 40656\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(520a-1816\right){x}+12288a-40656$ |
360.1-b2 |
360.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{2} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$12.39841016$ |
1.960360774 |
\( \frac{21296}{15} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 4\) , \( 0\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+4{x}$ |
360.1-b3 |
360.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{20} \cdot 3^{4} \cdot 5^{4} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$12.39841016$ |
1.960360774 |
\( \frac{470596}{225} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -16\) , \( -16\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-16{x}-16$ |
360.1-b4 |
360.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{22} \cdot 3^{2} \cdot 5^{8} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$12.39841016$ |
1.960360774 |
\( \frac{136835858}{1875} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -136\) , \( 560\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-136{x}+560$ |
360.1-b5 |
360.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{22} \cdot 3^{8} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$3.099602540$ |
1.960360774 |
\( \frac{546718898}{405} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -216\) , \( -1296\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-216{x}-1296$ |
360.1-b6 |
360.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{23} \cdot 3^{10} \cdot 5 \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$1$ |
$0.774900635$ |
1.960360774 |
\( \frac{9441678981290413}{32805} a + \frac{5971442099652584}{6561} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -520 a - 1816\) , \( -12288 a - 40656\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-520a-1816\right){x}-12288a-40656$ |
360.1-c1 |
360.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{8} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 3 \) |
$1$ |
$6.428566356$ |
3.049336766 |
\( -\frac{62849152}{16875} a - \frac{198815248}{16875} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -a - 8\) , \( 4 a - 12\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-8\right){x}+4a-12$ |
360.1-c2 |
360.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{11} \cdot 3^{32} \cdot 5 \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{6} \cdot 3 \) |
$1$ |
$0.401785397$ |
3.049336766 |
\( \frac{20987609362339243}{1412147682405} a - \frac{13270225655923498}{282429536481} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( 329 a - 983\) , \( 6187 a - 17397\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(329a-983\right){x}+6187a-17397$ |
360.1-c3 |
360.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{11} \cdot 3^{8} \cdot 5 \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$16$ |
\( 2^{2} \cdot 3 \) |
$1$ |
$0.401785397$ |
3.049336766 |
\( -\frac{46403344565504160322387}{3645} a + \frac{29348051975317917813034}{729} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( 5069 a - 16383\) , \( 359031 a - 1137397\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(5069a-16383\right){x}+359031a-1137397$ |
360.1-c4 |
360.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{10} \cdot 3^{16} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \cdot 3 \) |
$1$ |
$1.607141589$ |
3.049336766 |
\( -\frac{3769942814012492}{2657205} a + \frac{11921672496636838}{2657205} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( 299 a - 1083\) , \( 5889 a - 18157\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(299a-1083\right){x}+5889a-18157$ |
360.1-c5 |
360.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{8} \cdot 5^{4} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$6.428566356$ |
3.049336766 |
\( \frac{1700618274992}{18225} a + \frac{5379567163076}{18225} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -a - 133\) , \( 179 a - 87\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-133\right){x}+179a-87$ |
360.1-c6 |
360.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{10} \cdot 3^{4} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 3 \) |
$1$ |
$6.428566356$ |
3.049336766 |
\( \frac{7436726031871174724}{135} a + \frac{23516992595379118094}{135} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -301 a - 1183\) , \( 5669 a + 18183\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-301a-1183\right){x}+5669a+18183$ |
360.1-d1 |
360.1-d |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{11} \cdot 3^{25} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$3.830752227$ |
$0.853913179$ |
4.137688294 |
\( -\frac{361462952968493}{1412147682405} a + \frac{1144863668511508}{1412147682405} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( 3 a + 45\) , \( -1010 a - 3160\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(3a+45\right){x}-1010a-3160$ |
360.1-d2 |
360.1-d |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{10} \cdot 3^{11} \cdot 5 \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1.915376113$ |
$6.831305436$ |
4.137688294 |
\( -\frac{83999141127976}{32805} a + \frac{53125728544790}{6561} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( 33 a + 25\) , \( 36 a + 272\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(33a+25\right){x}+36a+272$ |
360.1-d3 |
360.1-d |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$0.957688056$ |
$13.66261087$ |
4.137688294 |
\( -\frac{72219488}{3645} a + \frac{238191988}{3645} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( -7 a - 25\) , \( 14 a + 42\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-7a-25\right){x}+14a+42$ |
360.1-d4 |
360.1-d |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{10} \cdot 3^{14} \cdot 5^{4} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1.915376113$ |
$3.415652718$ |
4.137688294 |
\( \frac{74541355592}{13286025} a + \frac{260191879754}{13286025} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( -47 a - 155\) , \( -280 a - 900\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-47a-155\right){x}-280a-900$ |
360.1-d5 |
360.1-d |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5 \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.915376113$ |
$27.32522174$ |
4.137688294 |
\( \frac{71858432}{135} a + \frac{45446896}{27} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( -7 a - 20\) , \( 17 a + 55\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-7a-20\right){x}+17a+55$ |
360.1-d6 |
360.1-d |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{11} \cdot 3^{7} \cdot 5^{8} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$3.830752227$ |
$0.853913179$ |
4.137688294 |
\( \frac{96329443968049}{455625} a + \frac{304932190386604}{455625} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( -737 a - 2435\) , \( -19486 a - 62208\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-737a-2435\right){x}-19486a-62208$ |
360.1-e1 |
360.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{16} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$7.341818993$ |
$0.805807860$ |
3.741667300 |
\( -\frac{27995042}{1171875} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -21\) , \( -321\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-21{x}-321$ |
360.1-e2 |
360.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{16} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.458863687$ |
$3.223231443$ |
3.741667300 |
\( \frac{54607676}{32805} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( 19\) , \( 29\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+19{x}+29$ |
360.1-e3 |
360.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{4} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.458863687$ |
$12.89292577$ |
3.741667300 |
\( \frac{3631696}{2025} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -6\) , \( -6\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-6{x}-6$ |
360.1-e4 |
360.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{8} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1.835454748$ |
$3.223231443$ |
3.741667300 |
\( \frac{868327204}{5625} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -51\) , \( -195\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-51{x}-195$ |
360.1-e5 |
360.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{20} \cdot 3^{4} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$2$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.114715921$ |
$25.78585154$ |
3.741667300 |
\( \frac{24918016}{45} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -61\) , \( 205\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-61{x}+205$ |
360.1-e6 |
360.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{4} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$7.341818993$ |
$0.805807860$ |
3.741667300 |
\( \frac{1770025017602}{75} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -801\) , \( -9645\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-801{x}-9645$ |
360.1-f1 |
360.1-f |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{20} \cdot 3^{3} \cdot 5 \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.628684938$ |
$25.87638347$ |
5.144422567 |
\( -\frac{3038670848}{45} a + \frac{1921808384}{9} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 272 a - 861\) , \( -4256 a + 13459\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(272a-861\right){x}-4256a+13459$ |
360.1-f2 |
360.1-f |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{10} \cdot 3^{18} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{7} \) |
$0.314342469$ |
$1.617273967$ |
5.144422567 |
\( -\frac{271639577970482}{215233605} a + \frac{859184870946862}{215233605} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( 697 a - 2203\) , \( 18367 a - 58077\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(697a-2203\right){x}+18367a-58077$ |
360.1-f3 |
360.1-f |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{12} \cdot 5^{4} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{8} \) |
$0.157171234$ |
$6.469095868$ |
5.144422567 |
\( -\frac{10124248}{164025} a + \frac{565311884}{164025} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( 47 a - 153\) , \( 267 a - 847\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(47a-153\right){x}+267a-847$ |
360.1-f4 |
360.1-f |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{10} \cdot 3^{12} \cdot 5^{8} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{7} \) |
$0.314342469$ |
$1.617273967$ |
5.144422567 |
\( \frac{16306902826}{4100625} a + \frac{54629621786}{4100625} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -123 a + 377\) , \( 1383 a - 4393\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-123a+377\right){x}+1383a-4393$ |
360.1-f5 |
360.1-f |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.314342469$ |
$25.87638347$ |
5.144422567 |
\( \frac{374412352}{405} a + \frac{1192670608}{405} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( 17 a - 58\) , \( -52 a + 162\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(17a-58\right){x}-52a+162$ |
360.1-f6 |
360.1-f |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{8} \cdot 3^{3} \cdot 5 \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.628684938$ |
$12.93819173$ |
5.144422567 |
\( \frac{244962045297848}{45} a + \frac{154927600687108}{9} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -13 a + 17\) , \( -259 a + 837\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-13a+17\right){x}-259a+837$ |
360.1-g1 |
360.1-g |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{8} \cdot 3^{3} \cdot 5 \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.762890722$ |
$25.87638347$ |
3.121302904 |
\( -\frac{3038670848}{45} a + \frac{1921808384}{9} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 68 a - 215\) , \( -566 a + 1790\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(68a-215\right){x}-566a+1790$ |
360.1-g2 |
360.1-g |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{22} \cdot 3^{18} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1.525781445$ |
$1.617273967$ |
3.121302904 |
\( -\frac{271639577970482}{215233605} a + \frac{859184870946862}{215233605} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 2788 a - 8800\) , \( 141360 a - 447000\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(2788a-8800\right){x}+141360a-447000$ |
360.1-g3 |
360.1-g |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{20} \cdot 3^{12} \cdot 5^{4} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.762890722$ |
$6.469095868$ |
3.121302904 |
\( -\frac{10124248}{164025} a + \frac{565311884}{164025} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 188 a - 600\) , \( 1760 a - 5560\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(188a-600\right){x}+1760a-5560$ |
360.1-g4 |
360.1-g |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{22} \cdot 3^{12} \cdot 5^{8} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$0.381445361$ |
$1.617273967$ |
3.121302904 |
\( \frac{16306902826}{4100625} a + \frac{54629621786}{4100625} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -492 a + 1520\) , \( 12048 a - 38168\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-492a+1520\right){x}+12048a-38168$ |
360.1-g5 |
360.1-g |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{6} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1.525781445$ |
$25.87638347$ |
3.121302904 |
\( \frac{374412352}{405} a + \frac{1192670608}{405} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 68 a - 220\) , \( -552 a + 1752\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(68a-220\right){x}-552a+1752$ |
360.1-g6 |
360.1-g |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{20} \cdot 3^{3} \cdot 5 \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$3.051562891$ |
$12.93819173$ |
3.121302904 |
\( \frac{244962045297848}{45} a + \frac{154927600687108}{9} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -52 a + 80\) , \( -1968 a + 6552\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-52a+80\right){x}-1968a+6552$ |
360.1-h1 |
360.1-h |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{8} \cdot 3^{3} \cdot 5 \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.628684938$ |
$12.93819173$ |
5.144422567 |
\( -\frac{244962045297848}{45} a + \frac{154927600687108}{9} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( 13 a + 17\) , \( 259 a + 837\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(13a+17\right){x}+259a+837$ |
360.1-h2 |
360.1-h |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{10} \cdot 3^{12} \cdot 5^{8} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{7} \) |
$0.314342469$ |
$1.617273967$ |
5.144422567 |
\( -\frac{16306902826}{4100625} a + \frac{54629621786}{4100625} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( 123 a + 377\) , \( -1383 a - 4393\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(123a+377\right){x}-1383a-4393$ |
360.1-h3 |
360.1-h |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{12} \cdot 5^{4} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{8} \) |
$0.157171234$ |
$6.469095868$ |
5.144422567 |
\( \frac{10124248}{164025} a + \frac{565311884}{164025} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -47 a - 153\) , \( -267 a - 847\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-47a-153\right){x}-267a-847$ |
360.1-h4 |
360.1-h |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.314342469$ |
$25.87638347$ |
5.144422567 |
\( -\frac{374412352}{405} a + \frac{1192670608}{405} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -17 a - 58\) , \( 52 a + 162\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-17a-58\right){x}+52a+162$ |
360.1-h5 |
360.1-h |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{10} \cdot 3^{18} \cdot 5^{2} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{7} \) |
$0.314342469$ |
$1.617273967$ |
5.144422567 |
\( \frac{271639577970482}{215233605} a + \frac{859184870946862}{215233605} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -697 a - 2203\) , \( -18367 a - 58077\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-697a-2203\right){x}-18367a-58077$ |
360.1-h6 |
360.1-h |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( - 2^{20} \cdot 3^{3} \cdot 5 \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.628684938$ |
$25.87638347$ |
5.144422567 |
\( \frac{3038670848}{45} a + \frac{1921808384}{9} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -272 a - 861\) , \( 4256 a + 13459\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-272a-861\right){x}+4256a+13459$ |
360.1-i1 |
360.1-i |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{23} \cdot 3^{32} \cdot 5 \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$16$ |
\( 2^{2} \) |
$1$ |
$0.401785397$ |
1.016445588 |
\( -\frac{20987609362339243}{1412147682405} a - \frac{13270225655923498}{282429536481} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -1316 a - 3920\) , \( -46864 a - 131320\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-1316a-3920\right){x}-46864a-131320$ |
360.1-i2 |
360.1-i |
$6$ |
$8$ |
\(\Q(\sqrt{10}) \) |
$2$ |
$[2, 0]$ |
360.1 |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{4} \cdot 5^{8} \) |
$2.46175$ |
$(2,a), (3,a+1), (3,a+2), (5,a)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$6.428566356$ |
1.016445588 |
\( \frac{62849152}{16875} a - \frac{198815248}{16875} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 4 a - 20\) , \( -40 a - 40\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(4a-20\right){x}-40a-40$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.