Base field \(\Q(\sqrt{26}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 26 \); class number \(2\).
Weierstrass equation
This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.
Mordell-Weil group structure
trivial
Invariants
Conductor: | $\frak{N}$ | = | \((4)\) | = | \((2,a)^{4}\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 16 \) | = | \(2^{4}\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||||
Discriminant: | $\Delta$ | = | $-4096$ | ||
Discriminant ideal: | $(\Delta)$ | = | \((-4096)\) | = | \((2,a)^{24}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||||
Discriminant norm: | $N(\Delta)$ | = | \( 16777216 \) | = | \(2^{24}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||||
Minimal discriminant: | $\frak{D}_{\mathrm{min}}$ | = | \((64)\) | = | \((2,a)^{12}\) |
Minimal discriminant norm: | $N(\frak{D}_{\mathrm{min}})$ | = | \( 4096 \) | = | \(2^{12}\) |
j-invariant: | $j$ | = | \( -23788477376 \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 0 \) |
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | $r$ | = | \(0\) |
Regulator: | $\mathrm{Reg}(E/K)$ | = | \( 1 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | = | \( 1 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 21.289112115898858603301341815485675910 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 1 \) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(1\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 2.0875691943467857742256996067683401680 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$\displaystyle 2.087569194 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 21.289112 \cdot 1 \cdot 1 } { {1^2 \cdot 10.198039} } \approx 2.087569194$
Local data at primes of bad reduction
This elliptic curve is not semistable. There is only one prime $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((2,a)\) | \(2\) | \(1\) | \(II^{*}\) | Additive | \(1\) | \(4\) | \(12\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(3\) | 3Nn |
\(5\) | 5B.4.2 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
5.
Its isogeny class
16.1-b
consists of curves linked by isogenies of
degree 5.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.