Properties

Label 2.2.104.1-16.1-b1
Base field Q(26)\Q(\sqrt{26})
Conductor norm 16 16
CM no
Base change no
Q-curve yes
Torsion order 1 1
Rank 0 0

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(26)\Q(\sqrt{26})

Generator aa, with minimal polynomial x226 x^{2} - 26 ; class number 22.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-26, 0, 1]))
 
gp: K = nfinit(Polrev([-26, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-26, 0, 1]);
 

Weierstrass equation

y2=x3+(a1)x2+(9586a48883)x1173397a+5983175{y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(9586a-48883\right){x}-1173397a+5983175
sage: E = EllipticCurve([K([0,0]),K([-1,1]),K([0,0]),K([-48883,9586]),K([5983175,-1173397])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,1]),Polrev([0,0]),Polrev([-48883,9586]),Polrev([5983175,-1173397])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,1],K![0,0],K![-48883,9586],K![5983175,-1173397]]);
 

This is not a global minimal model: it is minimal at all primes except (2,a)(2,a). No global minimal model exists.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

trivial

Invariants

Conductor: N\frak{N} = (4)(4) = (2,a)4(2,a)^{4}
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 16 16 = 242^{4}
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 4096-4096
Discriminant ideal: (Δ)(\Delta) = (4096)(-4096) = (2,a)24(2,a)^{24}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Δ)N(\Delta) = 16777216 16777216 = 2242^{24}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
Minimal discriminant: Dmin\frak{D}_{\mathrm{min}} = (64)(64) = (2,a)12(2,a)^{12}
Minimal discriminant norm: N(Dmin)N(\frak{D}_{\mathrm{min}}) = 4096 4096 = 2122^{12}
j-invariant: jj = 23788477376 -23788477376
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 0 0
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 00
Regulator: Reg(E/K)\mathrm{Reg}(E/K) = 1 1
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) = 1 1
Global period: Ω(E/K)\Omega(E/K) 21.289112115898858603301341815485675910 21.289112115898858603301341815485675910
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 1 1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 11
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 2.0875691943467857742256996067683401680 2.0875691943467857742256996067683401680
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

2.087569194L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/2121.289112111210.1980392.087569194\displaystyle 2.087569194 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 21.289112 \cdot 1 \cdot 1 } { {1^2 \cdot 10.198039} } \approx 2.087569194

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There is only one prime p\frak{p} of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(2,a)(2,a) 22 11 IIII^{*} Additive 11 44 1212 00

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
33 3Nn
55 5B.4.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 5.
Its isogeny class 16.1-b consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.