Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
16.1-a1
16.1-a
$1$
$1$
\(\Q(\sqrt{26}) \)
$2$
$[2, 0]$
16.1
\( 2^{4} \)
\( 2^{20} \)
$1.82257$
$(2,a)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$1$
\( 2 \)
$0.326166095$
$24.54409375$
3.139996309
\( -23504 a - 119652 \)
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -2 a + 22\) , \( 10 a - 58\bigr] \)
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2a+22\right){x}+10a-58$
16.1-b1
16.1-b
$2$
$5$
\(\Q(\sqrt{26}) \)
$2$
$[2, 0]$
16.1
\( 2^{4} \)
\( 2^{24} \)
$1.82257$
$(2,a)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$3, 5$
3Nn , 5B.4.2
$1$
\( 1 \)
$1$
$21.28911211$
2.087569194
\( -23788477376 \)
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( 9586 a - 48883\) , \( -1173397 a + 5983175\bigr] \)
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(9586a-48883\right){x}-1173397a+5983175$
16.1-b2
16.1-b
$2$
$5$
\(\Q(\sqrt{26}) \)
$2$
$[2, 0]$
16.1
\( 2^{4} \)
\( 2^{24} \)
$1.82257$
$(2,a)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$3, 5$
3Nn , 5B.4.1
$1$
\( 1 \)
$1$
$21.28911211$
2.087569194
\( 64 \)
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( -14 a + 77\) , \( -277 a + 1415\bigr] \)
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-14a+77\right){x}-277a+1415$
16.1-c1
16.1-c
$1$
$1$
\(\Q(\sqrt{26}) \)
$2$
$[2, 0]$
16.1
\( 2^{4} \)
\( 2^{20} \)
$1.82257$
$(2,a)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$1$
\( 2 \)
$0.326166095$
$24.54409375$
3.139996309
\( 23504 a - 119652 \)
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( 2 a + 22\) , \( -10 a - 58\bigr] \)
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(2a+22\right){x}-10a-58$
16.1-d1
16.1-d
$1$
$1$
\(\Q(\sqrt{26}) \)
$2$
$[2, 0]$
16.1
\( 2^{4} \)
\( 2^{8} \)
$1.82257$
$(2,a)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$1$
\( 2 \)
$0.269173633$
$24.54409375$
2.591330699
\( 23504 a - 119652 \)
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -3 a + 22\) , \( -6 a + 13\bigr] \)
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-3a+22\right){x}-6a+13$
16.1-e1
16.1-e
$2$
$5$
\(\Q(\sqrt{26}) \)
$2$
$[2, 0]$
16.1
\( 2^{4} \)
\( 2^{12} \)
$1.82257$
$(2,a)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$3, 5$
3Nn , 5B.4.2
$1$
\( 1 \)
$1$
$21.28911211$
2.087569194
\( -23788477376 \)
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 2396 a - 12214\) , \( -139366 a + 710632\bigr] \)
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2396a-12214\right){x}-139366a+710632$
16.1-e2
16.1-e
$2$
$5$
\(\Q(\sqrt{26}) \)
$2$
$[2, 0]$
16.1
\( 2^{4} \)
\( 2^{12} \)
$1.82257$
$(2,a)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$3, 5$
3Nn , 5B.4.1
$1$
\( 1 \)
$1$
$21.28911211$
2.087569194
\( 64 \)
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -4 a + 26\) , \( -46 a + 232\bigr] \)
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a+26\right){x}-46a+232$
16.1-f1
16.1-f
$1$
$1$
\(\Q(\sqrt{26}) \)
$2$
$[2, 0]$
16.1
\( 2^{4} \)
\( 2^{8} \)
$1.82257$
$(2,a)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$1$
\( 2 \)
$0.269173633$
$24.54409375$
2.591330699
\( -23504 a - 119652 \)
\( \bigl[a\) , \( a - 1\) , \( 0\) , \( 3 a + 22\) , \( 6 a + 13\bigr] \)
${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(3a+22\right){x}+6a+13$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.