Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
16.1-a1 16.1-a \(\Q(\sqrt{26}) \) \( 2^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.326166095$ $24.54409375$ 3.139996309 \( -23504 a - 119652 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -2 a + 22\) , \( 10 a - 58\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2a+22\right){x}+10a-58$
16.1-b1 16.1-b \(\Q(\sqrt{26}) \) \( 2^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $21.28911211$ 2.087569194 \( -23788477376 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 9586 a - 48883\) , \( -1173397 a + 5983175\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(9586a-48883\right){x}-1173397a+5983175$
16.1-b2 16.1-b \(\Q(\sqrt{26}) \) \( 2^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $21.28911211$ 2.087569194 \( 64 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -14 a + 77\) , \( -277 a + 1415\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-14a+77\right){x}-277a+1415$
16.1-c1 16.1-c \(\Q(\sqrt{26}) \) \( 2^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.326166095$ $24.54409375$ 3.139996309 \( 23504 a - 119652 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 2 a + 22\) , \( -10 a - 58\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(2a+22\right){x}-10a-58$
16.1-d1 16.1-d \(\Q(\sqrt{26}) \) \( 2^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.269173633$ $24.54409375$ 2.591330699 \( 23504 a - 119652 \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -3 a + 22\) , \( -6 a + 13\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-3a+22\right){x}-6a+13$
16.1-e1 16.1-e \(\Q(\sqrt{26}) \) \( 2^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $21.28911211$ 2.087569194 \( -23788477376 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 2396 a - 12214\) , \( -139366 a + 710632\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2396a-12214\right){x}-139366a+710632$
16.1-e2 16.1-e \(\Q(\sqrt{26}) \) \( 2^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $21.28911211$ 2.087569194 \( 64 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -4 a + 26\) , \( -46 a + 232\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a+26\right){x}-46a+232$
16.1-f1 16.1-f \(\Q(\sqrt{26}) \) \( 2^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.269173633$ $24.54409375$ 2.591330699 \( -23504 a - 119652 \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 3 a + 22\) , \( 6 a + 13\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(3a+22\right){x}+6a+13$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.