Learn more

Refine search


Results (1-50 of 186 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1.1-a1 1.1-a Q(26)\Q(\sqrt{26}) 1 1 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.7361482660.736148266 0.649667488 23788477376 -23788477376 [a \bigl[a , a1 -a - 1 , a+1 a + 1 , 595a3050 595 a - 3050 , 20142a102714] 20142 a - 102714\bigr] y2+axy+(a+1)y=x3+(a1)x2+(595a3050)x+20142a102714{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(595a-3050\right){x}+20142a-102714
1.1-a2 1.1-a Q(26)\Q(\sqrt{26}) 1 1 0 Z/5Z\Z/5\Z SU(2)\mathrm{SU}(2) 11 18.4037066518.40370665 0.649667488 64 64 [a \bigl[a , a1 -a - 1 , a+1 a + 1 , 5a+10 -5 a + 10 , 3a+6] -3 a + 6\bigr] y2+axy+(a+1)y=x3+(a1)x2+(5a+10)x3a+6{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-5a+10\right){x}-3a+6
1.1-b1 1.1-b Q(26)\Q(\sqrt{26}) 1 1 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.7361482660.736148266 1.804631911 23788477376 -23788477376 [0 \bigl[0 , a1 a - 1 , 0 0 , 2396a12214 2396 a - 12214 , 139366a710632] 139366 a - 710632\bigr] y2=x3+(a1)x2+(2396a12214)x+139366a710632{y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(2396a-12214\right){x}+139366a-710632
1.1-b2 1.1-b Q(26)\Q(\sqrt{26}) 1 1 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 18.4037066518.40370665 1.804631911 64 64 [0 \bigl[0 , a1 a - 1 , 0 0 , 4a+26 -4 a + 26 , 46a232] 46 a - 232\bigr] y2=x3+(a1)x2+(4a+26)x+46a232{y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-4a+26\right){x}+46a-232
8.1-a1 8.1-a Q(26)\Q(\sqrt{26}) 23 2^{3} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 8.9091903558.909190355 1.747235979 23504a119652 -23504 a - 119652 [0 \bigl[0 , a+1 a + 1 , 0 0 , 2a+22 -2 a + 22 , 10a+58] -10 a + 58\bigr] y2=x3+(a+1)x2+(2a+22)x10a+58{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-2a+22\right){x}-10a+58
8.1-b1 8.1-b Q(26)\Q(\sqrt{26}) 23 2^{3} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.3094073820.309407382 8.9091903558.909190355 2.162430844 23504a119652 23504 a - 119652 [a \bigl[a , a a , 0 0 , 5a+26 5 a + 26 , 10a+51] 10 a + 51\bigr] y2+axy=x3+ax2+(5a+26)x+10a+51{y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(5a+26\right){x}+10a+51
8.1-c1 8.1-c Q(26)\Q(\sqrt{26}) 23 2^{3} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 8.9091903558.909190355 1.747235979 23504a119652 23504 a - 119652 [0 \bigl[0 , a+1 -a + 1 , 0 0 , 2a+22 2 a + 22 , 10a+58] 10 a + 58\bigr] y2=x3+(a+1)x2+(2a+22)x+10a+58{y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2a+22\right){x}+10a+58
8.1-d1 8.1-d Q(26)\Q(\sqrt{26}) 23 2^{3} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.3094073820.309407382 8.9091903558.909190355 2.162430844 23504a119652 -23504 a - 119652 [a \bigl[a , a -a , 0 0 , 5a+26 -5 a + 26 , 10a+51] -10 a + 51\bigr] y2+axy=x3ax2+(5a+26)x10a+51{y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(-5a+26\right){x}-10a+51
9.1-a1 9.1-a Q(26)\Q(\sqrt{26}) 32 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 21.4094954021.40949540 4.198747493 778688729 -\frac{778688}{729} [a \bigl[a , a1 -a - 1 , a+1 a + 1 , 15a92 15 a - 92 , 104a+521] -104 a + 521\bigr] y2+axy+(a+1)y=x3+(a1)x2+(15a92)x104a+521{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(15a-92\right){x}-104a+521
9.1-a2 9.1-a Q(26)\Q(\sqrt{26}) 32 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 42.8189908042.81899080 4.198747493 7840275227 \frac{78402752}{27} [0 \bigl[0 , a+1 -a + 1 , 0 0 , 356a1810 356 a - 1810 , 7554a+38516] -7554 a + 38516\bigr] y2=x3+(a+1)x2+(356a1810)x7554a+38516{y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(356a-1810\right){x}-7554a+38516
9.1-b1 9.1-b Q(26)\Q(\sqrt{26}) 32 3^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3277215640.327721564 21.4094954021.40949540 1.376020096 778688729 -\frac{778688}{729} [0 \bigl[0 , a1 a - 1 , 0 0 , 76a382 76 a - 382 , 1490a+7600] -1490 a + 7600\bigr] y2=x3+(a1)x2+(76a382)x1490a+7600{y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(76a-382\right){x}-1490a+7600
9.1-b2 9.1-b Q(26)\Q(\sqrt{26}) 32 3^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3277215640.327721564 42.8189908042.81899080 1.376020096 7840275227 \frac{78402752}{27} [a \bigl[a , a a , a+1 a + 1 , 93a445 93 a - 445 , 988a+5086] -988 a + 5086\bigr] y2+axy+(a+1)y=x3+ax2+(93a445)x988a+5086{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(93a-445\right){x}-988a+5086
10.1-a1 10.1-a Q(26)\Q(\sqrt{26}) 25 2 \cdot 5 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 17.0562456417.05624564 1.672502487 3761712925000a+443930496250 -\frac{37617129}{25000} a + \frac{44393049}{6250} [a \bigl[a , 1 1 , 0 0 , 5a8 5 a - 8 , 26a119] 26 a - 119\bigr] y2+axy=x3+x2+(5a8)x+26a119{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(5a-8\right){x}+26a-119
10.1-a2 10.1-a Q(26)\Q(\sqrt{26}) 25 2 \cdot 5 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.6822498250.682249825 1.672502487 53061817148288884376110a+13528162053290863787225 -\frac{530618171482888843761}{10} a + \frac{1352816205329086378722}{5} [a \bigl[a , 1 1 , 0 0 , 3145a16048 3145 a - 16048 , 224946a1147199] 224946 a - 1147199\bigr] y2+axy=x3+x2+(3145a16048)x+224946a1147199{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(3145a-16048\right){x}+224946a-1147199
10.1-b1 10.1-b Q(26)\Q(\sqrt{26}) 25 2 \cdot 5 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.5366989830.536698983 17.1750060017.17500600 1.807760930 391019640a+35733780 -\frac{391019}{640} a + \frac{357337}{80} [a \bigl[a , a1 a - 1 , a a , 1479a7517 1479 a - 7517 , 61002a+311088] -61002 a + 311088\bigr] y2+axy+ay=x3+(a1)x2+(1479a7517)x61002a+311088{y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1479a-7517\right){x}-61002a+311088
10.1-c1 10.1-c Q(26)\Q(\sqrt{26}) 25 2 \cdot 5 0 Z/5Z\Z/5\Z SU(2)\mathrm{SU}(2) 11 17.0562456417.05624564 1.672502487 3761712925000a+443930496250 -\frac{37617129}{25000} a + \frac{44393049}{6250} [a+1 \bigl[a + 1 , a a , 0 0 , 8a+28 8 a + 28 , 12a+48] 12 a + 48\bigr] y2+(a+1)xy=x3+ax2+(8a+28)x+12a+48{y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(8a+28\right){x}+12a+48
10.1-c2 10.1-c Q(26)\Q(\sqrt{26}) 25 2 \cdot 5 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.6822498250.682249825 1.672502487 53061817148288884376110a+13528162053290863787225 -\frac{530618171482888843761}{10} a + \frac{1352816205329086378722}{5} [a+1 \bigl[a + 1 , a a , 0 0 , 793a3982 793 a - 3982 , 26907a137142] 26907 a - 137142\bigr] y2+(a+1)xy=x3+ax2+(793a3982)x+26907a137142{y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(793a-3982\right){x}+26907a-137142
10.1-d1 10.1-d Q(26)\Q(\sqrt{26}) 25 2 \cdot 5 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0805262410.080526241 17.1750060017.17500600 3.526070609 391019640a+35733780 -\frac{391019}{640} a + \frac{357337}{80} [1 \bigl[1 , a+1 -a + 1 , 1 1 , 368a1872 368 a - 1872 , 6871a+35033] -6871 a + 35033\bigr] y2+xy+y=x3+(a+1)x2+(368a1872)x6871a+35033{y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(368a-1872\right){x}-6871a+35033
10.2-a1 10.2-a Q(26)\Q(\sqrt{26}) 25 2 \cdot 5 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 17.0562456417.05624564 1.672502487 3761712925000a+443930496250 \frac{37617129}{25000} a + \frac{44393049}{6250} [a \bigl[a , 1 1 , 0 0 , 5a8 -5 a - 8 , 26a119] -26 a - 119\bigr] y2+axy=x3+x2+(5a8)x26a119{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-5a-8\right){x}-26a-119
10.2-a2 10.2-a Q(26)\Q(\sqrt{26}) 25 2 \cdot 5 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.6822498250.682249825 1.672502487 53061817148288884376110a+13528162053290863787225 \frac{530618171482888843761}{10} a + \frac{1352816205329086378722}{5} [a \bigl[a , 1 1 , 0 0 , 3145a16048 -3145 a - 16048 , 224946a1147199] -224946 a - 1147199\bigr] y2+axy=x3+x2+(3145a16048)x224946a1147199{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-3145a-16048\right){x}-224946a-1147199
10.2-b1 10.2-b Q(26)\Q(\sqrt{26}) 25 2 \cdot 5 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.5366989830.536698983 17.1750060017.17500600 1.807760930 391019640a+35733780 \frac{391019}{640} a + \frac{357337}{80} [a \bigl[a , a -a , a a , 8a+27 -8 a + 27 , 15a+70] -15 a + 70\bigr] y2+axy+ay=x3ax2+(8a+27)x15a+70{y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-8a+27\right){x}-15a+70
10.2-c1 10.2-c Q(26)\Q(\sqrt{26}) 25 2 \cdot 5 0 Z/5Z\Z/5\Z SU(2)\mathrm{SU}(2) 11 17.0562456417.05624564 1.672502487 3761712925000a+443930496250 \frac{37617129}{25000} a + \frac{44393049}{6250} [a+1 \bigl[a + 1 , a a , a a , 5a+15 5 a + 15 , 3a+9] 3 a + 9\bigr] y2+(a+1)xy+ay=x3+ax2+(5a+15)x+3a+9{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(5a+15\right){x}+3a+9
10.2-c2 10.2-c Q(26)\Q(\sqrt{26}) 25 2 \cdot 5 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.6822498250.682249825 1.672502487 53061817148288884376110a+13528162053290863787225 \frac{530618171482888843761}{10} a + \frac{1352816205329086378722}{5} [a+1 \bigl[a + 1 , a a , a a , 780a3995 -780 a - 3995 , 30902a157591] -30902 a - 157591\bigr] y2+(a+1)xy+ay=x3+ax2+(780a3995)x30902a157591{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-780a-3995\right){x}-30902a-157591
10.2-d1 10.2-d Q(26)\Q(\sqrt{26}) 25 2 \cdot 5 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0805262410.080526241 17.1750060017.17500600 3.526070609 391019640a+35733780 \frac{391019}{640} a + \frac{357337}{80} [1 \bigl[1 , a+1 a + 1 , 1 1 , 368a1872 -368 a - 1872 , 6871a+35033] 6871 a + 35033\bigr] y2+xy+y=x3+(a+1)x2+(368a1872)x+6871a+35033{y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-368a-1872\right){x}+6871a+35033
13.1-a1 13.1-a Q(26)\Q(\sqrt{26}) 13 13 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.6291888720.629188872 3.9087205493.908720549 1.929252060 2292144169a11688353169 \frac{2292144}{169} a - \frac{11688353}{169} [a+1 \bigl[a + 1 , a+1 a + 1 , 1 1 , 20a26 20 a - 26 , 70a222] 70 a - 222\bigr] y2+(a+1)xy+y=x3+(a+1)x2+(20a26)x+70a222{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(20a-26\right){x}+70a-222
13.1-b1 13.1-b Q(26)\Q(\sqrt{26}) 13 13 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.6291888720.629188872 3.9087205493.908720549 1.929252060 2292144169a11688353169 -\frac{2292144}{169} a - \frac{11688353}{169} [a+1 \bigl[a + 1 , a+1 a + 1 , a+1 a + 1 , 6a39 -6 a - 39 , 109a560] -109 a - 560\bigr] y2+(a+1)xy+(a+1)y=x3+(a+1)x2+(6a39)x109a560{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-6a-39\right){x}-109a-560
13.1-c1 13.1-c Q(26)\Q(\sqrt{26}) 13 13 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 3.9087205493.908720549 0.766563167 2292144169a11688353169 -\frac{2292144}{169} a - \frac{11688353}{169} [a \bigl[a , 0 0 , a a , 51a259 -51 a - 259 , 561a2857] -561 a - 2857\bigr] y2+axy+ay=x3+(51a259)x561a2857{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-51a-259\right){x}-561a-2857
13.1-d1 13.1-d Q(26)\Q(\sqrt{26}) 13 13 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 3.9087205493.908720549 0.766563167 2292144169a11688353169 \frac{2292144}{169} a - \frac{11688353}{169} [a \bigl[a , 0 0 , a a , 51a259 51 a - 259 , 561a2857] 561 a - 2857\bigr] y2+axy+ay=x3+(51a259)x+561a2857{y}^2+a{x}{y}+a{y}={x}^{3}+\left(51a-259\right){x}+561a-2857
16.1-a1 16.1-a Q(26)\Q(\sqrt{26}) 24 2^{4} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.3261660950.326166095 24.5440937524.54409375 3.139996309 23504a119652 -23504 a - 119652 [0 \bigl[0 , a1 -a - 1 , 0 0 , 2a+22 -2 a + 22 , 10a58] 10 a - 58\bigr] y2=x3+(a1)x2+(2a+22)x+10a58{y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2a+22\right){x}+10a-58
16.1-b1 16.1-b Q(26)\Q(\sqrt{26}) 24 2^{4} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 21.2891121121.28911211 2.087569194 23788477376 -23788477376 [0 \bigl[0 , a1 a - 1 , 0 0 , 9586a48883 9586 a - 48883 , 1173397a+5983175] -1173397 a + 5983175\bigr] y2=x3+(a1)x2+(9586a48883)x1173397a+5983175{y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(9586a-48883\right){x}-1173397a+5983175
16.1-b2 16.1-b Q(26)\Q(\sqrt{26}) 24 2^{4} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 21.2891121121.28911211 2.087569194 64 64 [0 \bigl[0 , a1 a - 1 , 0 0 , 14a+77 -14 a + 77 , 277a+1415] -277 a + 1415\bigr] y2=x3+(a1)x2+(14a+77)x277a+1415{y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-14a+77\right){x}-277a+1415
16.1-c1 16.1-c Q(26)\Q(\sqrt{26}) 24 2^{4} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.3261660950.326166095 24.5440937524.54409375 3.139996309 23504a119652 23504 a - 119652 [0 \bigl[0 , a1 a - 1 , 0 0 , 2a+22 2 a + 22 , 10a58] -10 a - 58\bigr] y2=x3+(a1)x2+(2a+22)x10a58{y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(2a+22\right){x}-10a-58
16.1-d1 16.1-d Q(26)\Q(\sqrt{26}) 24 2^{4} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.2691736330.269173633 24.5440937524.54409375 2.591330699 23504a119652 23504 a - 119652 [a \bigl[a , a1 -a - 1 , 0 0 , 3a+22 -3 a + 22 , 6a+13] -6 a + 13\bigr] y2+axy=x3+(a1)x2+(3a+22)x6a+13{y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-3a+22\right){x}-6a+13
16.1-e1 16.1-e Q(26)\Q(\sqrt{26}) 24 2^{4} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 21.2891121121.28911211 2.087569194 23788477376 -23788477376 [0 \bigl[0 , a+1 -a + 1 , 0 0 , 2396a12214 2396 a - 12214 , 139366a+710632] -139366 a + 710632\bigr] y2=x3+(a+1)x2+(2396a12214)x139366a+710632{y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2396a-12214\right){x}-139366a+710632
16.1-e2 16.1-e Q(26)\Q(\sqrt{26}) 24 2^{4} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 21.2891121121.28911211 2.087569194 64 64 [0 \bigl[0 , a+1 -a + 1 , 0 0 , 4a+26 -4 a + 26 , 46a+232] -46 a + 232\bigr] y2=x3+(a+1)x2+(4a+26)x46a+232{y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a+26\right){x}-46a+232
16.1-f1 16.1-f Q(26)\Q(\sqrt{26}) 24 2^{4} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.2691736330.269173633 24.5440937524.54409375 2.591330699 23504a119652 -23504 a - 119652 [a \bigl[a , a1 a - 1 , 0 0 , 3a+22 3 a + 22 , 6a+13] 6 a + 13\bigr] y2+axy=x3+(a1)x2+(3a+22)x+6a+13{y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(3a+22\right){x}+6a+13
17.1-a1 17.1-a Q(26)\Q(\sqrt{26}) 17 17 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.0363188028.036318802 1.576051784 51663230952524137569a+263253473410724137569 -\frac{516632309525}{24137569} a + \frac{2632534734107}{24137569} [a \bigl[a , a a , a a , 26a103 26 a - 103 , 111a+602] -111 a + 602\bigr] y2+axy+ay=x3+ax2+(26a103)x111a+602{y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(26a-103\right){x}-111a+602
17.1-a2 17.1-a Q(26)\Q(\sqrt{26}) 17 17 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 16.0726376016.07263760 1.576051784 1232072984913a+6367866914913 \frac{123207298}{4913} a + \frac{636786691}{4913} [a \bigl[a , a a , a a , 6a3 6 a - 3 , 5a+6] 5 a + 6\bigr] y2+axy+ay=x3+ax2+(6a3)x+5a+6{y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(6a-3\right){x}+5a+6
17.1-b1 17.1-b Q(26)\Q(\sqrt{26}) 17 17 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.2026896162.202689616 8.0363188028.036318802 3.471552899 51663230952524137569a+263253473410724137569 -\frac{516632309525}{24137569} a + \frac{2632534734107}{24137569} [a+1 \bigl[a + 1 , 1 1 , 0 0 , 8a6 8 a - 6 , 3a+53] -3 a + 53\bigr] y2+(a+1)xy=x3+x2+(8a6)x3a+53{y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(8a-6\right){x}-3a+53
17.1-b2 17.1-b Q(26)\Q(\sqrt{26}) 17 17 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.2026896162.202689616 16.0726376016.07263760 3.471552899 1232072984913a+6367866914913 \frac{123207298}{4913} a + \frac{636786691}{4913} [a+1 \bigl[a + 1 , 1 1 , 0 0 , 3a+19 3 a + 19 , 4a+16] 4 a + 16\bigr] y2+(a+1)xy=x3+x2+(3a+19)x+4a+16{y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(3a+19\right){x}+4a+16
17.2-a1 17.2-a Q(26)\Q(\sqrt{26}) 17 17 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 16.0726376016.07263760 1.576051784 1232072984913a+6367866914913 -\frac{123207298}{4913} a + \frac{636786691}{4913} [a \bigl[a , a -a , a a , 6a3 -6 a - 3 , 5a+6] -5 a + 6\bigr] y2+axy+ay=x3ax2+(6a3)x5a+6{y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-6a-3\right){x}-5a+6
17.2-a2 17.2-a Q(26)\Q(\sqrt{26}) 17 17 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.0363188028.036318802 1.576051784 51663230952524137569a+263253473410724137569 \frac{516632309525}{24137569} a + \frac{2632534734107}{24137569} [a \bigl[a , a -a , a a , 26a103 -26 a - 103 , 111a+602] 111 a + 602\bigr] y2+axy+ay=x3ax2+(26a103)x+111a+602{y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-26a-103\right){x}+111a+602
17.2-b1 17.2-b Q(26)\Q(\sqrt{26}) 17 17 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.2026896162.202689616 16.0726376016.07263760 3.471552899 1232072984913a+6367866914913 -\frac{123207298}{4913} a + \frac{636786691}{4913} [a+1 \bigl[a + 1 , a+1 -a + 1 , 0 0 , 3a+19 -3 a + 19 , 4a+16] -4 a + 16\bigr] y2+(a+1)xy=x3+(a+1)x2+(3a+19)x4a+16{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-3a+19\right){x}-4a+16
17.2-b2 17.2-b Q(26)\Q(\sqrt{26}) 17 17 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.2026896162.202689616 8.0363188028.036318802 3.471552899 51663230952524137569a+263253473410724137569 \frac{516632309525}{24137569} a + \frac{2632534734107}{24137569} [a+1 \bigl[a + 1 , a+1 -a + 1 , 0 0 , 8a6 -8 a - 6 , 3a+53] 3 a + 53\bigr] y2+(a+1)xy=x3+(a+1)x2+(8a6)x+3a+53{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-8a-6\right){x}+3a+53
20.1-a1 20.1-a Q(26)\Q(\sqrt{26}) 225 2^{2} \cdot 5 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 9.1015970959.101597095 14.3955290514.39552905 3.211948519 44931276816425a+229105461036425 -\frac{449312768164}{25} a + \frac{2291054610364}{25} [a \bigl[a , a a , a a , 223a1105 223 a - 1105 , 3866a+19765] -3866 a + 19765\bigr] y2+axy+ay=x3+ax2+(223a1105)x3866a+19765{y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(223a-1105\right){x}-3866a+19765
20.1-a2 20.1-a Q(26)\Q(\sqrt{26}) 225 2^{2} \cdot 5 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 4.5507985474.550798547 28.7910581128.79105811 3.211948519 26162592625a+134634992625 -\frac{26162592}{625} a + \frac{134634992}{625} [a \bigl[a , a a , a a , 18a60 18 a - 60 , 50a+306] -50 a + 306\bigr] y2+axy+ay=x3+ax2+(18a60)x50a+306{y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(18a-60\right){x}-50a+306
20.1-a3 20.1-a Q(26)\Q(\sqrt{26}) 225 2^{2} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.2753992732.275399273 14.3955290514.39552905 3.211948519 3507883972390625a+17822712628390625 \frac{3507883972}{390625} a + \frac{17822712628}{390625} [a \bigl[a , a a , a a , 13a35 13 a - 35 , 98a+549] -98 a + 549\bigr] y2+axy+ay=x3+ax2+(13a35)x98a+549{y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(13a-35\right){x}-98a+549
20.1-a4 20.1-a Q(26)\Q(\sqrt{26}) 225 2^{2} \cdot 5 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.2753992732.275399273 14.3955290514.39552905 3.211948519 249446425a+1276313625 \frac{2494464}{25} a + \frac{12763136}{25} [0 \bigl[0 , a1 a - 1 , 0 0 , 18a87 18 a - 87 , 49a+251] -49 a + 251\bigr] y2=x3+(a1)x2+(18a87)x49a+251{y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(18a-87\right){x}-49a+251
20.1-b1 20.1-b Q(26)\Q(\sqrt{26}) 225 2^{2} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 14.3955290514.39552905 2.117396641 44931276816425a+229105461036425 -\frac{449312768164}{25} a + \frac{2291054610364}{25} [0 \bigl[0 , a+1 a + 1 , 0 0 , 962a+4910 962 a + 4910 , 11906a60710] -11906 a - 60710\bigr] y2=x3+(a+1)x2+(962a+4910)x11906a60710{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(962a+4910\right){x}-11906a-60710
20.1-b2 20.1-b Q(26)\Q(\sqrt{26}) 225 2^{2} \cdot 5 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 28.7910581128.79105811 2.117396641 26162592625a+134634992625 -\frac{26162592}{625} a + \frac{134634992}{625} [0 \bigl[0 , a+1 a + 1 , 0 0 , 258a1310 -258 a - 1310 , 2318a11822] -2318 a - 11822\bigr] y2=x3+(a+1)x2+(258a1310)x2318a11822{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-258a-1310\right){x}-2318a-11822
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.