1.1-a1
1.1-a
2 2 2
5 5 5
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1.1
1 1 1
1 1 1
0.91129 0.91129 0 . 9 1 1 2 9
none \textsf{none} none
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
3 , 5 3, 5 3 , 5
3Nn , 5B.1.2
9 9 9
1 1 1
1 1 1
0.736148266 0.736148266 0 . 7 3 6 1 4 8 2 6 6
0.649667488
− 23788477376 -23788477376 − 2 3 7 8 8 4 7 7 3 7 6
[ a \bigl[a [ a , − a − 1 -a - 1 − a − 1 , a + 1 a + 1 a + 1 , 595 a − 3050 595 a - 3050 5 9 5 a − 3 0 5 0 , 20142 a − 102714 ] 20142 a - 102714\bigr] 2 0 1 4 2 a − 1 0 2 7 1 4 ]
y 2 + a x y + ( a + 1 ) y = x 3 + ( − a − 1 ) x 2 + ( 595 a − 3050 ) x + 20142 a − 102714 {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(595a-3050\right){x}+20142a-102714 y 2 + a x y + ( a + 1 ) y = x 3 + ( − a − 1 ) x 2 + ( 5 9 5 a − 3 0 5 0 ) x + 2 0 1 4 2 a − 1 0 2 7 1 4
1.1-a2
1.1-a
2 2 2
5 5 5
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1.1
1 1 1
1 1 1
0.91129 0.91129 0 . 9 1 1 2 9
none \textsf{none} none
0
Z / 5 Z \Z/5\Z Z / 5 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
3 , 5 3, 5 3 , 5
3Nn , 5B.1.1
9 9 9
1 1 1
1 1 1
18.40370665 18.40370665 1 8 . 4 0 3 7 0 6 6 5
0.649667488
64 64 6 4
[ a \bigl[a [ a , − a − 1 -a - 1 − a − 1 , a + 1 a + 1 a + 1 , − 5 a + 10 -5 a + 10 − 5 a + 1 0 , − 3 a + 6 ] -3 a + 6\bigr] − 3 a + 6 ]
y 2 + a x y + ( a + 1 ) y = x 3 + ( − a − 1 ) x 2 + ( − 5 a + 10 ) x − 3 a + 6 {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-5a+10\right){x}-3a+6 y 2 + a x y + ( a + 1 ) y = x 3 + ( − a − 1 ) x 2 + ( − 5 a + 1 0 ) x − 3 a + 6
1.1-b1
1.1-b
2 2 2
5 5 5
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1.1
1 1 1
2 12 2^{12} 2 1 2
0.91129 0.91129 0 . 9 1 1 2 9
none \textsf{none} none
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
3 , 5 3, 5 3 , 5
3Nn , 5B.4.2
25 25 2 5
1 1 1
1 1 1
0.736148266 0.736148266 0 . 7 3 6 1 4 8 2 6 6
1.804631911
− 23788477376 -23788477376 − 2 3 7 8 8 4 7 7 3 7 6
[ 0 \bigl[0 [ 0 , a − 1 a - 1 a − 1 , 0 0 0 , 2396 a − 12214 2396 a - 12214 2 3 9 6 a − 1 2 2 1 4 , 139366 a − 710632 ] 139366 a - 710632\bigr] 1 3 9 3 6 6 a − 7 1 0 6 3 2 ]
y 2 = x 3 + ( a − 1 ) x 2 + ( 2396 a − 12214 ) x + 139366 a − 710632 {y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(2396a-12214\right){x}+139366a-710632 y 2 = x 3 + ( a − 1 ) x 2 + ( 2 3 9 6 a − 1 2 2 1 4 ) x + 1 3 9 3 6 6 a − 7 1 0 6 3 2
1.1-b2
1.1-b
2 2 2
5 5 5
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1.1
1 1 1
2 12 2^{12} 2 1 2
0.91129 0.91129 0 . 9 1 1 2 9
none \textsf{none} none
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
3 , 5 3, 5 3 , 5
3Nn , 5B.4.1
1 1 1
1 1 1
1 1 1
18.40370665 18.40370665 1 8 . 4 0 3 7 0 6 6 5
1.804631911
64 64 6 4
[ 0 \bigl[0 [ 0 , a − 1 a - 1 a − 1 , 0 0 0 , − 4 a + 26 -4 a + 26 − 4 a + 2 6 , 46 a − 232 ] 46 a - 232\bigr] 4 6 a − 2 3 2 ]
y 2 = x 3 + ( a − 1 ) x 2 + ( − 4 a + 26 ) x + 46 a − 232 {y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-4a+26\right){x}+46a-232 y 2 = x 3 + ( a − 1 ) x 2 + ( − 4 a + 2 6 ) x + 4 6 a − 2 3 2
8.1-a1
8.1-a
1 1 1
1 1 1
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
8.1
2 3 2^{3} 2 3
2 20 2^{20} 2 2 0
1.53260 1.53260 1 . 5 3 2 6 0
( 2 , a ) (2,a) ( 2 , a )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
2 2 2
1 1 1
8.909190355 8.909190355 8 . 9 0 9 1 9 0 3 5 5
1.747235979
− 23504 a − 119652 -23504 a - 119652 − 2 3 5 0 4 a − 1 1 9 6 5 2
[ 0 \bigl[0 [ 0 , a + 1 a + 1 a + 1 , 0 0 0 , − 2 a + 22 -2 a + 22 − 2 a + 2 2 , − 10 a + 58 ] -10 a + 58\bigr] − 1 0 a + 5 8 ]
y 2 = x 3 + ( a + 1 ) x 2 + ( − 2 a + 22 ) x − 10 a + 58 {y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-2a+22\right){x}-10a+58 y 2 = x 3 + ( a + 1 ) x 2 + ( − 2 a + 2 2 ) x − 1 0 a + 5 8
8.1-b1
8.1-b
1 1 1
1 1 1
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
8.1
2 3 2^{3} 2 3
2 8 2^{8} 2 8
1.53260 1.53260 1 . 5 3 2 6 0
( 2 , a ) (2,a) ( 2 , a )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
2 2 2^{2} 2 2
0.309407382 0.309407382 0 . 3 0 9 4 0 7 3 8 2
8.909190355 8.909190355 8 . 9 0 9 1 9 0 3 5 5
2.162430844
23504 a − 119652 23504 a - 119652 2 3 5 0 4 a − 1 1 9 6 5 2
[ a \bigl[a [ a , a a a , 0 0 0 , 5 a + 26 5 a + 26 5 a + 2 6 , 10 a + 51 ] 10 a + 51\bigr] 1 0 a + 5 1 ]
y 2 + a x y = x 3 + a x 2 + ( 5 a + 26 ) x + 10 a + 51 {y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(5a+26\right){x}+10a+51 y 2 + a x y = x 3 + a x 2 + ( 5 a + 2 6 ) x + 1 0 a + 5 1
8.1-c1
8.1-c
1 1 1
1 1 1
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
8.1
2 3 2^{3} 2 3
2 20 2^{20} 2 2 0
1.53260 1.53260 1 . 5 3 2 6 0
( 2 , a ) (2,a) ( 2 , a )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
2 2 2
1 1 1
8.909190355 8.909190355 8 . 9 0 9 1 9 0 3 5 5
1.747235979
23504 a − 119652 23504 a - 119652 2 3 5 0 4 a − 1 1 9 6 5 2
[ 0 \bigl[0 [ 0 , − a + 1 -a + 1 − a + 1 , 0 0 0 , 2 a + 22 2 a + 22 2 a + 2 2 , 10 a + 58 ] 10 a + 58\bigr] 1 0 a + 5 8 ]
y 2 = x 3 + ( − a + 1 ) x 2 + ( 2 a + 22 ) x + 10 a + 58 {y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2a+22\right){x}+10a+58 y 2 = x 3 + ( − a + 1 ) x 2 + ( 2 a + 2 2 ) x + 1 0 a + 5 8
8.1-d1
8.1-d
1 1 1
1 1 1
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
8.1
2 3 2^{3} 2 3
2 8 2^{8} 2 8
1.53260 1.53260 1 . 5 3 2 6 0
( 2 , a ) (2,a) ( 2 , a )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
2 2 2^{2} 2 2
0.309407382 0.309407382 0 . 3 0 9 4 0 7 3 8 2
8.909190355 8.909190355 8 . 9 0 9 1 9 0 3 5 5
2.162430844
− 23504 a − 119652 -23504 a - 119652 − 2 3 5 0 4 a − 1 1 9 6 5 2
[ a \bigl[a [ a , − a -a − a , 0 0 0 , − 5 a + 26 -5 a + 26 − 5 a + 2 6 , − 10 a + 51 ] -10 a + 51\bigr] − 1 0 a + 5 1 ]
y 2 + a x y = x 3 − a x 2 + ( − 5 a + 26 ) x − 10 a + 51 {y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(-5a+26\right){x}-10a+51 y 2 + a x y = x 3 − a x 2 + ( − 5 a + 2 6 ) x − 1 0 a + 5 1
9.1-a1
9.1-a
2 2 2
2 2 2
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
9.1
3 2 3^{2} 3 2
3 12 3^{12} 3 1 2
1.57840 1.57840 1 . 5 7 8 4 0
( 3 ) (3) ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Nn
4 4 4
2 2 2
1 1 1
21.40949540 21.40949540 2 1 . 4 0 9 4 9 5 4 0
4.198747493
− 778688 729 -\frac{778688}{729} − 7 2 9 7 7 8 6 8 8
[ a \bigl[a [ a , − a − 1 -a - 1 − a − 1 , a + 1 a + 1 a + 1 , 15 a − 92 15 a - 92 1 5 a − 9 2 , − 104 a + 521 ] -104 a + 521\bigr] − 1 0 4 a + 5 2 1 ]
y 2 + a x y + ( a + 1 ) y = x 3 + ( − a − 1 ) x 2 + ( 15 a − 92 ) x − 104 a + 521 {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(15a-92\right){x}-104a+521 y 2 + a x y + ( a + 1 ) y = x 3 + ( − a − 1 ) x 2 + ( 1 5 a − 9 2 ) x − 1 0 4 a + 5 2 1
9.1-a2
9.1-a
2 2 2
2 2 2
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
9.1
3 2 3^{2} 3 2
2 12 ⋅ 3 6 2^{12} \cdot 3^{6} 2 1 2 ⋅ 3 6
1.57840 1.57840 1 . 5 7 8 4 0
( 3 ) (3) ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Nn
4 4 4
1 1 1
1 1 1
42.81899080 42.81899080 4 2 . 8 1 8 9 9 0 8 0
4.198747493
78402752 27 \frac{78402752}{27} 2 7 7 8 4 0 2 7 5 2
[ 0 \bigl[0 [ 0 , − a + 1 -a + 1 − a + 1 , 0 0 0 , 356 a − 1810 356 a - 1810 3 5 6 a − 1 8 1 0 , − 7554 a + 38516 ] -7554 a + 38516\bigr] − 7 5 5 4 a + 3 8 5 1 6 ]
y 2 = x 3 + ( − a + 1 ) x 2 + ( 356 a − 1810 ) x − 7554 a + 38516 {y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(356a-1810\right){x}-7554a+38516 y 2 = x 3 + ( − a + 1 ) x 2 + ( 3 5 6 a − 1 8 1 0 ) x − 7 5 5 4 a + 3 8 5 1 6
9.1-b1
9.1-b
2 2 2
2 2 2
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
9.1
3 2 3^{2} 3 2
2 12 ⋅ 3 12 2^{12} \cdot 3^{12} 2 1 2 ⋅ 3 1 2
1.57840 1.57840 1 . 5 7 8 4 0
( 3 ) (3) ( 3 )
2 2 2
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Nn
1 1 1
2 2 2
0.327721564 0.327721564 0 . 3 2 7 7 2 1 5 6 4
21.40949540 21.40949540 2 1 . 4 0 9 4 9 5 4 0
1.376020096
− 778688 729 -\frac{778688}{729} − 7 2 9 7 7 8 6 8 8
[ 0 \bigl[0 [ 0 , a − 1 a - 1 a − 1 , 0 0 0 , 76 a − 382 76 a - 382 7 6 a − 3 8 2 , − 1490 a + 7600 ] -1490 a + 7600\bigr] − 1 4 9 0 a + 7 6 0 0 ]
y 2 = x 3 + ( a − 1 ) x 2 + ( 76 a − 382 ) x − 1490 a + 7600 {y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(76a-382\right){x}-1490a+7600 y 2 = x 3 + ( a − 1 ) x 2 + ( 7 6 a − 3 8 2 ) x − 1 4 9 0 a + 7 6 0 0
9.1-b2
9.1-b
2 2 2
2 2 2
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
9.1
3 2 3^{2} 3 2
3 6 3^{6} 3 6
1.57840 1.57840 1 . 5 7 8 4 0
( 3 ) (3) ( 3 )
2 2 2
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Nn
1 1 1
1 1 1
0.327721564 0.327721564 0 . 3 2 7 7 2 1 5 6 4
42.81899080 42.81899080 4 2 . 8 1 8 9 9 0 8 0
1.376020096
78402752 27 \frac{78402752}{27} 2 7 7 8 4 0 2 7 5 2
[ a \bigl[a [ a , a a a , a + 1 a + 1 a + 1 , 93 a − 445 93 a - 445 9 3 a − 4 4 5 , − 988 a + 5086 ] -988 a + 5086\bigr] − 9 8 8 a + 5 0 8 6 ]
y 2 + a x y + ( a + 1 ) y = x 3 + a x 2 + ( 93 a − 445 ) x − 988 a + 5086 {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(93a-445\right){x}-988a+5086 y 2 + a x y + ( a + 1 ) y = x 3 + a x 2 + ( 9 3 a − 4 4 5 ) x − 9 8 8 a + 5 0 8 6
10.1-a1
10.1-a
2 2 2
5 5 5
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 17 ⋅ 5 5 - 2^{17} \cdot 5^{5} − 2 1 7 ⋅ 5 5
1.62052 1.62052 1 . 6 2 0 5 2
( 2 , a ) , ( 5 , a + 4 ) (2,a), (5,a+4) ( 2 , a ) , ( 5 , a + 4 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B.4.1
1 1 1
1 1 1
1 1 1
17.05624564 17.05624564 1 7 . 0 5 6 2 4 5 6 4
1.672502487
− 37617129 25000 a + 44393049 6250 -\frac{37617129}{25000} a + \frac{44393049}{6250} − 2 5 0 0 0 3 7 6 1 7 1 2 9 a + 6 2 5 0 4 4 3 9 3 0 4 9
[ a \bigl[a [ a , 1 1 1 , 0 0 0 , 5 a − 8 5 a - 8 5 a − 8 , 26 a − 119 ] 26 a - 119\bigr] 2 6 a − 1 1 9 ]
y 2 + a x y = x 3 + x 2 + ( 5 a − 8 ) x + 26 a − 119 {y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(5a-8\right){x}+26a-119 y 2 + a x y = x 3 + x 2 + ( 5 a − 8 ) x + 2 6 a − 1 1 9
10.1-a2
10.1-a
2 2 2
5 5 5
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 13 ⋅ 5 - 2^{13} \cdot 5 − 2 1 3 ⋅ 5
1.62052 1.62052 1 . 6 2 0 5 2
( 2 , a ) , ( 5 , a + 4 ) (2,a), (5,a+4) ( 2 , a ) , ( 5 , a + 4 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B.4.2
25 25 2 5
1 1 1
1 1 1
0.682249825 0.682249825 0 . 6 8 2 2 4 9 8 2 5
1.672502487
− 530618171482888843761 10 a + 1352816205329086378722 5 -\frac{530618171482888843761}{10} a + \frac{1352816205329086378722}{5} − 1 0 5 3 0 6 1 8 1 7 1 4 8 2 8 8 8 8 4 3 7 6 1 a + 5 1 3 5 2 8 1 6 2 0 5 3 2 9 0 8 6 3 7 8 7 2 2
[ a \bigl[a [ a , 1 1 1 , 0 0 0 , 3145 a − 16048 3145 a - 16048 3 1 4 5 a − 1 6 0 4 8 , 224946 a − 1147199 ] 224946 a - 1147199\bigr] 2 2 4 9 4 6 a − 1 1 4 7 1 9 9 ]
y 2 + a x y = x 3 + x 2 + ( 3145 a − 16048 ) x + 224946 a − 1147199 {y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(3145a-16048\right){x}+224946a-1147199 y 2 + a x y = x 3 + x 2 + ( 3 1 4 5 a − 1 6 0 4 8 ) x + 2 2 4 9 4 6 a − 1 1 4 7 1 9 9
10.1-b1
10.1-b
1 1 1
1 1 1
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 25 ⋅ 5 - 2^{25} \cdot 5 − 2 2 5 ⋅ 5
1.62052 1.62052 1 . 6 2 0 5 2
( 2 , a ) , ( 5 , a + 4 ) (2,a), (5,a+4) ( 2 , a ) , ( 5 , a + 4 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
1 1 1
0.536698983 0.536698983 0 . 5 3 6 6 9 8 9 8 3
17.17500600 17.17500600 1 7 . 1 7 5 0 0 6 0 0
1.807760930
− 391019 640 a + 357337 80 -\frac{391019}{640} a + \frac{357337}{80} − 6 4 0 3 9 1 0 1 9 a + 8 0 3 5 7 3 3 7
[ a \bigl[a [ a , a − 1 a - 1 a − 1 , a a a , 1479 a − 7517 1479 a - 7517 1 4 7 9 a − 7 5 1 7 , − 61002 a + 311088 ] -61002 a + 311088\bigr] − 6 1 0 0 2 a + 3 1 1 0 8 8 ]
y 2 + a x y + a y = x 3 + ( a − 1 ) x 2 + ( 1479 a − 7517 ) x − 61002 a + 311088 {y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1479a-7517\right){x}-61002a+311088 y 2 + a x y + a y = x 3 + ( a − 1 ) x 2 + ( 1 4 7 9 a − 7 5 1 7 ) x − 6 1 0 0 2 a + 3 1 1 0 8 8
10.1-c1
10.1-c
2 2 2
5 5 5
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 5 ⋅ 5 5 - 2^{5} \cdot 5^{5} − 2 5 ⋅ 5 5
1.62052 1.62052 1 . 6 2 0 5 2
( 2 , a ) , ( 5 , a + 4 ) (2,a), (5,a+4) ( 2 , a ) , ( 5 , a + 4 )
0
Z / 5 Z \Z/5\Z Z / 5 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B.1.1
1 1 1
5 2 5^{2} 5 2
1 1 1
17.05624564 17.05624564 1 7 . 0 5 6 2 4 5 6 4
1.672502487
− 37617129 25000 a + 44393049 6250 -\frac{37617129}{25000} a + \frac{44393049}{6250} − 2 5 0 0 0 3 7 6 1 7 1 2 9 a + 6 2 5 0 4 4 3 9 3 0 4 9
[ a + 1 \bigl[a + 1 [ a + 1 , a a a , 0 0 0 , 8 a + 28 8 a + 28 8 a + 2 8 , 12 a + 48 ] 12 a + 48\bigr] 1 2 a + 4 8 ]
y 2 + ( a + 1 ) x y = x 3 + a x 2 + ( 8 a + 28 ) x + 12 a + 48 {y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(8a+28\right){x}+12a+48 y 2 + ( a + 1 ) x y = x 3 + a x 2 + ( 8 a + 2 8 ) x + 1 2 a + 4 8
10.1-c2
10.1-c
2 2 2
5 5 5
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 ⋅ 5 - 2 \cdot 5 − 2 ⋅ 5
1.62052 1.62052 1 . 6 2 0 5 2
( 2 , a ) , ( 5 , a + 4 ) (2,a), (5,a+4) ( 2 , a ) , ( 5 , a + 4 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B.1.2
25 25 2 5
1 1 1
1 1 1
0.682249825 0.682249825 0 . 6 8 2 2 4 9 8 2 5
1.672502487
− 530618171482888843761 10 a + 1352816205329086378722 5 -\frac{530618171482888843761}{10} a + \frac{1352816205329086378722}{5} − 1 0 5 3 0 6 1 8 1 7 1 4 8 2 8 8 8 8 4 3 7 6 1 a + 5 1 3 5 2 8 1 6 2 0 5 3 2 9 0 8 6 3 7 8 7 2 2
[ a + 1 \bigl[a + 1 [ a + 1 , a a a , 0 0 0 , 793 a − 3982 793 a - 3982 7 9 3 a − 3 9 8 2 , 26907 a − 137142 ] 26907 a - 137142\bigr] 2 6 9 0 7 a − 1 3 7 1 4 2 ]
y 2 + ( a + 1 ) x y = x 3 + a x 2 + ( 793 a − 3982 ) x + 26907 a − 137142 {y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(793a-3982\right){x}+26907a-137142 y 2 + ( a + 1 ) x y = x 3 + a x 2 + ( 7 9 3 a − 3 9 8 2 ) x + 2 6 9 0 7 a − 1 3 7 1 4 2
10.1-d1
10.1-d
1 1 1
1 1 1
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 13 ⋅ 5 - 2^{13} \cdot 5 − 2 1 3 ⋅ 5
1.62052 1.62052 1 . 6 2 0 5 2
( 2 , a ) , ( 5 , a + 4 ) (2,a), (5,a+4) ( 2 , a ) , ( 5 , a + 4 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
13 13 1 3
0.080526241 0.080526241 0 . 0 8 0 5 2 6 2 4 1
17.17500600 17.17500600 1 7 . 1 7 5 0 0 6 0 0
3.526070609
− 391019 640 a + 357337 80 -\frac{391019}{640} a + \frac{357337}{80} − 6 4 0 3 9 1 0 1 9 a + 8 0 3 5 7 3 3 7
[ 1 \bigl[1 [ 1 , − a + 1 -a + 1 − a + 1 , 1 1 1 , 368 a − 1872 368 a - 1872 3 6 8 a − 1 8 7 2 , − 6871 a + 35033 ] -6871 a + 35033\bigr] − 6 8 7 1 a + 3 5 0 3 3 ]
y 2 + x y + y = x 3 + ( − a + 1 ) x 2 + ( 368 a − 1872 ) x − 6871 a + 35033 {y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(368a-1872\right){x}-6871a+35033 y 2 + x y + y = x 3 + ( − a + 1 ) x 2 + ( 3 6 8 a − 1 8 7 2 ) x − 6 8 7 1 a + 3 5 0 3 3
10.2-a1
10.2-a
2 2 2
5 5 5
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.2
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 17 ⋅ 5 5 - 2^{17} \cdot 5^{5} − 2 1 7 ⋅ 5 5
1.62052 1.62052 1 . 6 2 0 5 2
( 2 , a ) , ( 5 , a + 1 ) (2,a), (5,a+1) ( 2 , a ) , ( 5 , a + 1 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B.4.1
1 1 1
1 1 1
1 1 1
17.05624564 17.05624564 1 7 . 0 5 6 2 4 5 6 4
1.672502487
37617129 25000 a + 44393049 6250 \frac{37617129}{25000} a + \frac{44393049}{6250} 2 5 0 0 0 3 7 6 1 7 1 2 9 a + 6 2 5 0 4 4 3 9 3 0 4 9
[ a \bigl[a [ a , 1 1 1 , 0 0 0 , − 5 a − 8 -5 a - 8 − 5 a − 8 , − 26 a − 119 ] -26 a - 119\bigr] − 2 6 a − 1 1 9 ]
y 2 + a x y = x 3 + x 2 + ( − 5 a − 8 ) x − 26 a − 119 {y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-5a-8\right){x}-26a-119 y 2 + a x y = x 3 + x 2 + ( − 5 a − 8 ) x − 2 6 a − 1 1 9
10.2-a2
10.2-a
2 2 2
5 5 5
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.2
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 13 ⋅ 5 - 2^{13} \cdot 5 − 2 1 3 ⋅ 5
1.62052 1.62052 1 . 6 2 0 5 2
( 2 , a ) , ( 5 , a + 1 ) (2,a), (5,a+1) ( 2 , a ) , ( 5 , a + 1 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B.4.2
25 25 2 5
1 1 1
1 1 1
0.682249825 0.682249825 0 . 6 8 2 2 4 9 8 2 5
1.672502487
530618171482888843761 10 a + 1352816205329086378722 5 \frac{530618171482888843761}{10} a + \frac{1352816205329086378722}{5} 1 0 5 3 0 6 1 8 1 7 1 4 8 2 8 8 8 8 4 3 7 6 1 a + 5 1 3 5 2 8 1 6 2 0 5 3 2 9 0 8 6 3 7 8 7 2 2
[ a \bigl[a [ a , 1 1 1 , 0 0 0 , − 3145 a − 16048 -3145 a - 16048 − 3 1 4 5 a − 1 6 0 4 8 , − 224946 a − 1147199 ] -224946 a - 1147199\bigr] − 2 2 4 9 4 6 a − 1 1 4 7 1 9 9 ]
y 2 + a x y = x 3 + x 2 + ( − 3145 a − 16048 ) x − 224946 a − 1147199 {y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-3145a-16048\right){x}-224946a-1147199 y 2 + a x y = x 3 + x 2 + ( − 3 1 4 5 a − 1 6 0 4 8 ) x − 2 2 4 9 4 6 a − 1 1 4 7 1 9 9
10.2-b1
10.2-b
1 1 1
1 1 1
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.2
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 25 ⋅ 5 - 2^{25} \cdot 5 − 2 2 5 ⋅ 5
1.62052 1.62052 1 . 6 2 0 5 2
( 2 , a ) , ( 5 , a + 1 ) (2,a), (5,a+1) ( 2 , a ) , ( 5 , a + 1 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
1 1 1
0.536698983 0.536698983 0 . 5 3 6 6 9 8 9 8 3
17.17500600 17.17500600 1 7 . 1 7 5 0 0 6 0 0
1.807760930
391019 640 a + 357337 80 \frac{391019}{640} a + \frac{357337}{80} 6 4 0 3 9 1 0 1 9 a + 8 0 3 5 7 3 3 7
[ a \bigl[a [ a , − a -a − a , a a a , − 8 a + 27 -8 a + 27 − 8 a + 2 7 , − 15 a + 70 ] -15 a + 70\bigr] − 1 5 a + 7 0 ]
y 2 + a x y + a y = x 3 − a x 2 + ( − 8 a + 27 ) x − 15 a + 70 {y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-8a+27\right){x}-15a+70 y 2 + a x y + a y = x 3 − a x 2 + ( − 8 a + 2 7 ) x − 1 5 a + 7 0
10.2-c1
10.2-c
2 2 2
5 5 5
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.2
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 5 ⋅ 5 5 - 2^{5} \cdot 5^{5} − 2 5 ⋅ 5 5
1.62052 1.62052 1 . 6 2 0 5 2
( 2 , a ) , ( 5 , a + 1 ) (2,a), (5,a+1) ( 2 , a ) , ( 5 , a + 1 )
0
Z / 5 Z \Z/5\Z Z / 5 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B.1.1
1 1 1
5 2 5^{2} 5 2
1 1 1
17.05624564 17.05624564 1 7 . 0 5 6 2 4 5 6 4
1.672502487
37617129 25000 a + 44393049 6250 \frac{37617129}{25000} a + \frac{44393049}{6250} 2 5 0 0 0 3 7 6 1 7 1 2 9 a + 6 2 5 0 4 4 3 9 3 0 4 9
[ a + 1 \bigl[a + 1 [ a + 1 , a a a , a a a , 5 a + 15 5 a + 15 5 a + 1 5 , 3 a + 9 ] 3 a + 9\bigr] 3 a + 9 ]
y 2 + ( a + 1 ) x y + a y = x 3 + a x 2 + ( 5 a + 15 ) x + 3 a + 9 {y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(5a+15\right){x}+3a+9 y 2 + ( a + 1 ) x y + a y = x 3 + a x 2 + ( 5 a + 1 5 ) x + 3 a + 9
10.2-c2
10.2-c
2 2 2
5 5 5
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.2
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 ⋅ 5 - 2 \cdot 5 − 2 ⋅ 5
1.62052 1.62052 1 . 6 2 0 5 2
( 2 , a ) , ( 5 , a + 1 ) (2,a), (5,a+1) ( 2 , a ) , ( 5 , a + 1 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B.1.2
25 25 2 5
1 1 1
1 1 1
0.682249825 0.682249825 0 . 6 8 2 2 4 9 8 2 5
1.672502487
530618171482888843761 10 a + 1352816205329086378722 5 \frac{530618171482888843761}{10} a + \frac{1352816205329086378722}{5} 1 0 5 3 0 6 1 8 1 7 1 4 8 2 8 8 8 8 4 3 7 6 1 a + 5 1 3 5 2 8 1 6 2 0 5 3 2 9 0 8 6 3 7 8 7 2 2
[ a + 1 \bigl[a + 1 [ a + 1 , a a a , a a a , − 780 a − 3995 -780 a - 3995 − 7 8 0 a − 3 9 9 5 , − 30902 a − 157591 ] -30902 a - 157591\bigr] − 3 0 9 0 2 a − 1 5 7 5 9 1 ]
y 2 + ( a + 1 ) x y + a y = x 3 + a x 2 + ( − 780 a − 3995 ) x − 30902 a − 157591 {y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-780a-3995\right){x}-30902a-157591 y 2 + ( a + 1 ) x y + a y = x 3 + a x 2 + ( − 7 8 0 a − 3 9 9 5 ) x − 3 0 9 0 2 a − 1 5 7 5 9 1
10.2-d1
10.2-d
1 1 1
1 1 1
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.2
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 13 ⋅ 5 - 2^{13} \cdot 5 − 2 1 3 ⋅ 5
1.62052 1.62052 1 . 6 2 0 5 2
( 2 , a ) , ( 5 , a + 1 ) (2,a), (5,a+1) ( 2 , a ) , ( 5 , a + 1 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
13 13 1 3
0.080526241 0.080526241 0 . 0 8 0 5 2 6 2 4 1
17.17500600 17.17500600 1 7 . 1 7 5 0 0 6 0 0
3.526070609
391019 640 a + 357337 80 \frac{391019}{640} a + \frac{357337}{80} 6 4 0 3 9 1 0 1 9 a + 8 0 3 5 7 3 3 7
[ 1 \bigl[1 [ 1 , a + 1 a + 1 a + 1 , 1 1 1 , − 368 a − 1872 -368 a - 1872 − 3 6 8 a − 1 8 7 2 , 6871 a + 35033 ] 6871 a + 35033\bigr] 6 8 7 1 a + 3 5 0 3 3 ]
y 2 + x y + y = x 3 + ( a + 1 ) x 2 + ( − 368 a − 1872 ) x + 6871 a + 35033 {y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-368a-1872\right){x}+6871a+35033 y 2 + x y + y = x 3 + ( a + 1 ) x 2 + ( − 3 6 8 a − 1 8 7 2 ) x + 6 8 7 1 a + 3 5 0 3 3
13.1-a1
13.1-a
1 1 1
1 1 1
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
13.1
13 13 1 3
1 3 4 13^{4} 1 3 4
1.73038 1.73038 1 . 7 3 0 3 8
( 13 , a ) (13,a) ( 1 3 , a )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
2 2 2^{2} 2 2
0.629188872 0.629188872 0 . 6 2 9 1 8 8 8 7 2
3.908720549 3.908720549 3 . 9 0 8 7 2 0 5 4 9
1.929252060
2292144 169 a − 11688353 169 \frac{2292144}{169} a - \frac{11688353}{169} 1 6 9 2 2 9 2 1 4 4 a − 1 6 9 1 1 6 8 8 3 5 3
[ a + 1 \bigl[a + 1 [ a + 1 , a + 1 a + 1 a + 1 , 1 1 1 , 20 a − 26 20 a - 26 2 0 a − 2 6 , 70 a − 222 ] 70 a - 222\bigr] 7 0 a − 2 2 2 ]
y 2 + ( a + 1 ) x y + y = x 3 + ( a + 1 ) x 2 + ( 20 a − 26 ) x + 70 a − 222 {y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(20a-26\right){x}+70a-222 y 2 + ( a + 1 ) x y + y = x 3 + ( a + 1 ) x 2 + ( 2 0 a − 2 6 ) x + 7 0 a − 2 2 2
13.1-b1
13.1-b
1 1 1
1 1 1
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
13.1
13 13 1 3
1 3 4 13^{4} 1 3 4
1.73038 1.73038 1 . 7 3 0 3 8
( 13 , a ) (13,a) ( 1 3 , a )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
2 2 2^{2} 2 2
0.629188872 0.629188872 0 . 6 2 9 1 8 8 8 7 2
3.908720549 3.908720549 3 . 9 0 8 7 2 0 5 4 9
1.929252060
− 2292144 169 a − 11688353 169 -\frac{2292144}{169} a - \frac{11688353}{169} − 1 6 9 2 2 9 2 1 4 4 a − 1 6 9 1 1 6 8 8 3 5 3
[ a + 1 \bigl[a + 1 [ a + 1 , a + 1 a + 1 a + 1 , a + 1 a + 1 a + 1 , − 6 a − 39 -6 a - 39 − 6 a − 3 9 , − 109 a − 560 ] -109 a - 560\bigr] − 1 0 9 a − 5 6 0 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( a + 1 ) x 2 + ( − 6 a − 39 ) x − 109 a − 560 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-6a-39\right){x}-109a-560 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( a + 1 ) x 2 + ( − 6 a − 3 9 ) x − 1 0 9 a − 5 6 0
13.1-c1
13.1-c
1 1 1
1 1 1
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
13.1
13 13 1 3
2 12 ⋅ 1 3 4 2^{12} \cdot 13^{4} 2 1 2 ⋅ 1 3 4
1.73038 1.73038 1 . 7 3 0 3 8
( 13 , a ) (13,a) ( 1 3 , a )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
2 2 2
1 1 1
3.908720549 3.908720549 3 . 9 0 8 7 2 0 5 4 9
0.766563167
− 2292144 169 a − 11688353 169 -\frac{2292144}{169} a - \frac{11688353}{169} − 1 6 9 2 2 9 2 1 4 4 a − 1 6 9 1 1 6 8 8 3 5 3
[ a \bigl[a [ a , 0 0 0 , a a a , − 51 a − 259 -51 a - 259 − 5 1 a − 2 5 9 , − 561 a − 2857 ] -561 a - 2857\bigr] − 5 6 1 a − 2 8 5 7 ]
y 2 + a x y + a y = x 3 + ( − 51 a − 259 ) x − 561 a − 2857 {y}^2+a{x}{y}+a{y}={x}^{3}+\left(-51a-259\right){x}-561a-2857 y 2 + a x y + a y = x 3 + ( − 5 1 a − 2 5 9 ) x − 5 6 1 a − 2 8 5 7
13.1-d1
13.1-d
1 1 1
1 1 1
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
13.1
13 13 1 3
2 12 ⋅ 1 3 4 2^{12} \cdot 13^{4} 2 1 2 ⋅ 1 3 4
1.73038 1.73038 1 . 7 3 0 3 8
( 13 , a ) (13,a) ( 1 3 , a )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
2 2 2
1 1 1
3.908720549 3.908720549 3 . 9 0 8 7 2 0 5 4 9
0.766563167
2292144 169 a − 11688353 169 \frac{2292144}{169} a - \frac{11688353}{169} 1 6 9 2 2 9 2 1 4 4 a − 1 6 9 1 1 6 8 8 3 5 3
[ a \bigl[a [ a , 0 0 0 , a a a , 51 a − 259 51 a - 259 5 1 a − 2 5 9 , 561 a − 2857 ] 561 a - 2857\bigr] 5 6 1 a − 2 8 5 7 ]
y 2 + a x y + a y = x 3 + ( 51 a − 259 ) x + 561 a − 2857 {y}^2+a{x}{y}+a{y}={x}^{3}+\left(51a-259\right){x}+561a-2857 y 2 + a x y + a y = x 3 + ( 5 1 a − 2 5 9 ) x + 5 6 1 a − 2 8 5 7
16.1-a1
16.1-a
1 1 1
1 1 1
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
16.1
2 4 2^{4} 2 4
2 20 2^{20} 2 2 0
1.82257 1.82257 1 . 8 2 2 5 7
( 2 , a ) (2,a) ( 2 , a )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
2 2 2
0.326166095 0.326166095 0 . 3 2 6 1 6 6 0 9 5
24.54409375 24.54409375 2 4 . 5 4 4 0 9 3 7 5
3.139996309
− 23504 a − 119652 -23504 a - 119652 − 2 3 5 0 4 a − 1 1 9 6 5 2
[ 0 \bigl[0 [ 0 , − a − 1 -a - 1 − a − 1 , 0 0 0 , − 2 a + 22 -2 a + 22 − 2 a + 2 2 , 10 a − 58 ] 10 a - 58\bigr] 1 0 a − 5 8 ]
y 2 = x 3 + ( − a − 1 ) x 2 + ( − 2 a + 22 ) x + 10 a − 58 {y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2a+22\right){x}+10a-58 y 2 = x 3 + ( − a − 1 ) x 2 + ( − 2 a + 2 2 ) x + 1 0 a − 5 8
16.1-b1
16.1-b
2 2 2
5 5 5
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
16.1
2 4 2^{4} 2 4
2 24 2^{24} 2 2 4
1.82257 1.82257 1 . 8 2 2 5 7
( 2 , a ) (2,a) ( 2 , a )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 5 3, 5 3 , 5
3Nn , 5B.4.2
1 1 1
1 1 1
1 1 1
21.28911211 21.28911211 2 1 . 2 8 9 1 1 2 1 1
2.087569194
− 23788477376 -23788477376 − 2 3 7 8 8 4 7 7 3 7 6
[ 0 \bigl[0 [ 0 , a − 1 a - 1 a − 1 , 0 0 0 , 9586 a − 48883 9586 a - 48883 9 5 8 6 a − 4 8 8 8 3 , − 1173397 a + 5983175 ] -1173397 a + 5983175\bigr] − 1 1 7 3 3 9 7 a + 5 9 8 3 1 7 5 ]
y 2 = x 3 + ( a − 1 ) x 2 + ( 9586 a − 48883 ) x − 1173397 a + 5983175 {y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(9586a-48883\right){x}-1173397a+5983175 y 2 = x 3 + ( a − 1 ) x 2 + ( 9 5 8 6 a − 4 8 8 8 3 ) x − 1 1 7 3 3 9 7 a + 5 9 8 3 1 7 5
16.1-b2
16.1-b
2 2 2
5 5 5
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
16.1
2 4 2^{4} 2 4
2 24 2^{24} 2 2 4
1.82257 1.82257 1 . 8 2 2 5 7
( 2 , a ) (2,a) ( 2 , a )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 5 3, 5 3 , 5
3Nn , 5B.4.1
1 1 1
1 1 1
1 1 1
21.28911211 21.28911211 2 1 . 2 8 9 1 1 2 1 1
2.087569194
64 64 6 4
[ 0 \bigl[0 [ 0 , a − 1 a - 1 a − 1 , 0 0 0 , − 14 a + 77 -14 a + 77 − 1 4 a + 7 7 , − 277 a + 1415 ] -277 a + 1415\bigr] − 2 7 7 a + 1 4 1 5 ]
y 2 = x 3 + ( a − 1 ) x 2 + ( − 14 a + 77 ) x − 277 a + 1415 {y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-14a+77\right){x}-277a+1415 y 2 = x 3 + ( a − 1 ) x 2 + ( − 1 4 a + 7 7 ) x − 2 7 7 a + 1 4 1 5
16.1-c1
16.1-c
1 1 1
1 1 1
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
16.1
2 4 2^{4} 2 4
2 20 2^{20} 2 2 0
1.82257 1.82257 1 . 8 2 2 5 7
( 2 , a ) (2,a) ( 2 , a )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
2 2 2
0.326166095 0.326166095 0 . 3 2 6 1 6 6 0 9 5
24.54409375 24.54409375 2 4 . 5 4 4 0 9 3 7 5
3.139996309
23504 a − 119652 23504 a - 119652 2 3 5 0 4 a − 1 1 9 6 5 2
[ 0 \bigl[0 [ 0 , a − 1 a - 1 a − 1 , 0 0 0 , 2 a + 22 2 a + 22 2 a + 2 2 , − 10 a − 58 ] -10 a - 58\bigr] − 1 0 a − 5 8 ]
y 2 = x 3 + ( a − 1 ) x 2 + ( 2 a + 22 ) x − 10 a − 58 {y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(2a+22\right){x}-10a-58 y 2 = x 3 + ( a − 1 ) x 2 + ( 2 a + 2 2 ) x − 1 0 a − 5 8
16.1-d1
16.1-d
1 1 1
1 1 1
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
16.1
2 4 2^{4} 2 4
2 8 2^{8} 2 8
1.82257 1.82257 1 . 8 2 2 5 7
( 2 , a ) (2,a) ( 2 , a )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
2 2 2
0.269173633 0.269173633 0 . 2 6 9 1 7 3 6 3 3
24.54409375 24.54409375 2 4 . 5 4 4 0 9 3 7 5
2.591330699
23504 a − 119652 23504 a - 119652 2 3 5 0 4 a − 1 1 9 6 5 2
[ a \bigl[a [ a , − a − 1 -a - 1 − a − 1 , 0 0 0 , − 3 a + 22 -3 a + 22 − 3 a + 2 2 , − 6 a + 13 ] -6 a + 13\bigr] − 6 a + 1 3 ]
y 2 + a x y = x 3 + ( − a − 1 ) x 2 + ( − 3 a + 22 ) x − 6 a + 13 {y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-3a+22\right){x}-6a+13 y 2 + a x y = x 3 + ( − a − 1 ) x 2 + ( − 3 a + 2 2 ) x − 6 a + 1 3
16.1-e1
16.1-e
2 2 2
5 5 5
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
16.1
2 4 2^{4} 2 4
2 12 2^{12} 2 1 2
1.82257 1.82257 1 . 8 2 2 5 7
( 2 , a ) (2,a) ( 2 , a )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 5 3, 5 3 , 5
3Nn , 5B.4.2
1 1 1
1 1 1
1 1 1
21.28911211 21.28911211 2 1 . 2 8 9 1 1 2 1 1
2.087569194
− 23788477376 -23788477376 − 2 3 7 8 8 4 7 7 3 7 6
[ 0 \bigl[0 [ 0 , − a + 1 -a + 1 − a + 1 , 0 0 0 , 2396 a − 12214 2396 a - 12214 2 3 9 6 a − 1 2 2 1 4 , − 139366 a + 710632 ] -139366 a + 710632\bigr] − 1 3 9 3 6 6 a + 7 1 0 6 3 2 ]
y 2 = x 3 + ( − a + 1 ) x 2 + ( 2396 a − 12214 ) x − 139366 a + 710632 {y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2396a-12214\right){x}-139366a+710632 y 2 = x 3 + ( − a + 1 ) x 2 + ( 2 3 9 6 a − 1 2 2 1 4 ) x − 1 3 9 3 6 6 a + 7 1 0 6 3 2
16.1-e2
16.1-e
2 2 2
5 5 5
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
16.1
2 4 2^{4} 2 4
2 12 2^{12} 2 1 2
1.82257 1.82257 1 . 8 2 2 5 7
( 2 , a ) (2,a) ( 2 , a )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 5 3, 5 3 , 5
3Nn , 5B.4.1
1 1 1
1 1 1
1 1 1
21.28911211 21.28911211 2 1 . 2 8 9 1 1 2 1 1
2.087569194
64 64 6 4
[ 0 \bigl[0 [ 0 , − a + 1 -a + 1 − a + 1 , 0 0 0 , − 4 a + 26 -4 a + 26 − 4 a + 2 6 , − 46 a + 232 ] -46 a + 232\bigr] − 4 6 a + 2 3 2 ]
y 2 = x 3 + ( − a + 1 ) x 2 + ( − 4 a + 26 ) x − 46 a + 232 {y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a+26\right){x}-46a+232 y 2 = x 3 + ( − a + 1 ) x 2 + ( − 4 a + 2 6 ) x − 4 6 a + 2 3 2
16.1-f1
16.1-f
1 1 1
1 1 1
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
16.1
2 4 2^{4} 2 4
2 8 2^{8} 2 8
1.82257 1.82257 1 . 8 2 2 5 7
( 2 , a ) (2,a) ( 2 , a )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
1 1 1
2 2 2
0.269173633 0.269173633 0 . 2 6 9 1 7 3 6 3 3
24.54409375 24.54409375 2 4 . 5 4 4 0 9 3 7 5
2.591330699
− 23504 a − 119652 -23504 a - 119652 − 2 3 5 0 4 a − 1 1 9 6 5 2
[ a \bigl[a [ a , a − 1 a - 1 a − 1 , 0 0 0 , 3 a + 22 3 a + 22 3 a + 2 2 , 6 a + 13 ] 6 a + 13\bigr] 6 a + 1 3 ]
y 2 + a x y = x 3 + ( a − 1 ) x 2 + ( 3 a + 22 ) x + 6 a + 13 {y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(3a+22\right){x}+6a+13 y 2 + a x y = x 3 + ( a − 1 ) x 2 + ( 3 a + 2 2 ) x + 6 a + 1 3
17.1-a1
17.1-a
2 2 2
2 2 2
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
17.1
17 17 1 7
− 2 12 ⋅ 1 7 6 - 2^{12} \cdot 17^{6} − 2 1 2 ⋅ 1 7 6
1.85041 1.85041 1 . 8 5 0 4 1
( a + 3 ) (a+3) ( a + 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3Nn
4 4 4
2 2 2
1 1 1
8.036318802 8.036318802 8 . 0 3 6 3 1 8 8 0 2
1.576051784
− 516632309525 24137569 a + 2632534734107 24137569 -\frac{516632309525}{24137569} a + \frac{2632534734107}{24137569} − 2 4 1 3 7 5 6 9 5 1 6 6 3 2 3 0 9 5 2 5 a + 2 4 1 3 7 5 6 9 2 6 3 2 5 3 4 7 3 4 1 0 7
[ a \bigl[a [ a , a a a , a a a , 26 a − 103 26 a - 103 2 6 a − 1 0 3 , − 111 a + 602 ] -111 a + 602\bigr] − 1 1 1 a + 6 0 2 ]
y 2 + a x y + a y = x 3 + a x 2 + ( 26 a − 103 ) x − 111 a + 602 {y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(26a-103\right){x}-111a+602 y 2 + a x y + a y = x 3 + a x 2 + ( 2 6 a − 1 0 3 ) x − 1 1 1 a + 6 0 2
17.1-a2
17.1-a
2 2 2
2 2 2
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
17.1
17 17 1 7
2 12 ⋅ 1 7 3 2^{12} \cdot 17^{3} 2 1 2 ⋅ 1 7 3
1.85041 1.85041 1 . 8 5 0 4 1
( a + 3 ) (a+3) ( a + 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3Nn
4 4 4
1 1 1
1 1 1
16.07263760 16.07263760 1 6 . 0 7 2 6 3 7 6 0
1.576051784
123207298 4913 a + 636786691 4913 \frac{123207298}{4913} a + \frac{636786691}{4913} 4 9 1 3 1 2 3 2 0 7 2 9 8 a + 4 9 1 3 6 3 6 7 8 6 6 9 1
[ a \bigl[a [ a , a a a , a a a , 6 a − 3 6 a - 3 6 a − 3 , 5 a + 6 ] 5 a + 6\bigr] 5 a + 6 ]
y 2 + a x y + a y = x 3 + a x 2 + ( 6 a − 3 ) x + 5 a + 6 {y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(6a-3\right){x}+5a+6 y 2 + a x y + a y = x 3 + a x 2 + ( 6 a − 3 ) x + 5 a + 6
17.1-b1
17.1-b
2 2 2
2 2 2
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
17.1
17 17 1 7
− 1 7 6 - 17^{6} − 1 7 6
1.85041 1.85041 1 . 8 5 0 4 1
( a + 3 ) (a+3) ( a + 3 )
2 2 2
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3Nn
1 1 1
2 2 2
2.202689616 2.202689616 2 . 2 0 2 6 8 9 6 1 6
8.036318802 8.036318802 8 . 0 3 6 3 1 8 8 0 2
3.471552899
− 516632309525 24137569 a + 2632534734107 24137569 -\frac{516632309525}{24137569} a + \frac{2632534734107}{24137569} − 2 4 1 3 7 5 6 9 5 1 6 6 3 2 3 0 9 5 2 5 a + 2 4 1 3 7 5 6 9 2 6 3 2 5 3 4 7 3 4 1 0 7
[ a + 1 \bigl[a + 1 [ a + 1 , 1 1 1 , 0 0 0 , 8 a − 6 8 a - 6 8 a − 6 , − 3 a + 53 ] -3 a + 53\bigr] − 3 a + 5 3 ]
y 2 + ( a + 1 ) x y = x 3 + x 2 + ( 8 a − 6 ) x − 3 a + 53 {y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(8a-6\right){x}-3a+53 y 2 + ( a + 1 ) x y = x 3 + x 2 + ( 8 a − 6 ) x − 3 a + 5 3
17.1-b2
17.1-b
2 2 2
2 2 2
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
17.1
17 17 1 7
1 7 3 17^{3} 1 7 3
1.85041 1.85041 1 . 8 5 0 4 1
( a + 3 ) (a+3) ( a + 3 )
2 2 2
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3Nn
1 1 1
1 1 1
2.202689616 2.202689616 2 . 2 0 2 6 8 9 6 1 6
16.07263760 16.07263760 1 6 . 0 7 2 6 3 7 6 0
3.471552899
123207298 4913 a + 636786691 4913 \frac{123207298}{4913} a + \frac{636786691}{4913} 4 9 1 3 1 2 3 2 0 7 2 9 8 a + 4 9 1 3 6 3 6 7 8 6 6 9 1
[ a + 1 \bigl[a + 1 [ a + 1 , 1 1 1 , 0 0 0 , 3 a + 19 3 a + 19 3 a + 1 9 , 4 a + 16 ] 4 a + 16\bigr] 4 a + 1 6 ]
y 2 + ( a + 1 ) x y = x 3 + x 2 + ( 3 a + 19 ) x + 4 a + 16 {y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(3a+19\right){x}+4a+16 y 2 + ( a + 1 ) x y = x 3 + x 2 + ( 3 a + 1 9 ) x + 4 a + 1 6
17.2-a1
17.2-a
2 2 2
2 2 2
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
17.2
17 17 1 7
2 12 ⋅ 1 7 3 2^{12} \cdot 17^{3} 2 1 2 ⋅ 1 7 3
1.85041 1.85041 1 . 8 5 0 4 1
( a − 3 ) (a-3) ( a − 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3Nn
4 4 4
1 1 1
1 1 1
16.07263760 16.07263760 1 6 . 0 7 2 6 3 7 6 0
1.576051784
− 123207298 4913 a + 636786691 4913 -\frac{123207298}{4913} a + \frac{636786691}{4913} − 4 9 1 3 1 2 3 2 0 7 2 9 8 a + 4 9 1 3 6 3 6 7 8 6 6 9 1
[ a \bigl[a [ a , − a -a − a , a a a , − 6 a − 3 -6 a - 3 − 6 a − 3 , − 5 a + 6 ] -5 a + 6\bigr] − 5 a + 6 ]
y 2 + a x y + a y = x 3 − a x 2 + ( − 6 a − 3 ) x − 5 a + 6 {y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-6a-3\right){x}-5a+6 y 2 + a x y + a y = x 3 − a x 2 + ( − 6 a − 3 ) x − 5 a + 6
17.2-a2
17.2-a
2 2 2
2 2 2
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
17.2
17 17 1 7
− 2 12 ⋅ 1 7 6 - 2^{12} \cdot 17^{6} − 2 1 2 ⋅ 1 7 6
1.85041 1.85041 1 . 8 5 0 4 1
( a − 3 ) (a-3) ( a − 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3Nn
4 4 4
2 2 2
1 1 1
8.036318802 8.036318802 8 . 0 3 6 3 1 8 8 0 2
1.576051784
516632309525 24137569 a + 2632534734107 24137569 \frac{516632309525}{24137569} a + \frac{2632534734107}{24137569} 2 4 1 3 7 5 6 9 5 1 6 6 3 2 3 0 9 5 2 5 a + 2 4 1 3 7 5 6 9 2 6 3 2 5 3 4 7 3 4 1 0 7
[ a \bigl[a [ a , − a -a − a , a a a , − 26 a − 103 -26 a - 103 − 2 6 a − 1 0 3 , 111 a + 602 ] 111 a + 602\bigr] 1 1 1 a + 6 0 2 ]
y 2 + a x y + a y = x 3 − a x 2 + ( − 26 a − 103 ) x + 111 a + 602 {y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-26a-103\right){x}+111a+602 y 2 + a x y + a y = x 3 − a x 2 + ( − 2 6 a − 1 0 3 ) x + 1 1 1 a + 6 0 2
17.2-b1
17.2-b
2 2 2
2 2 2
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
17.2
17 17 1 7
1 7 3 17^{3} 1 7 3
1.85041 1.85041 1 . 8 5 0 4 1
( a − 3 ) (a-3) ( a − 3 )
2 2 2
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3Nn
1 1 1
1 1 1
2.202689616 2.202689616 2 . 2 0 2 6 8 9 6 1 6
16.07263760 16.07263760 1 6 . 0 7 2 6 3 7 6 0
3.471552899
− 123207298 4913 a + 636786691 4913 -\frac{123207298}{4913} a + \frac{636786691}{4913} − 4 9 1 3 1 2 3 2 0 7 2 9 8 a + 4 9 1 3 6 3 6 7 8 6 6 9 1
[ a + 1 \bigl[a + 1 [ a + 1 , − a + 1 -a + 1 − a + 1 , 0 0 0 , − 3 a + 19 -3 a + 19 − 3 a + 1 9 , − 4 a + 16 ] -4 a + 16\bigr] − 4 a + 1 6 ]
y 2 + ( a + 1 ) x y = x 3 + ( − a + 1 ) x 2 + ( − 3 a + 19 ) x − 4 a + 16 {y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-3a+19\right){x}-4a+16 y 2 + ( a + 1 ) x y = x 3 + ( − a + 1 ) x 2 + ( − 3 a + 1 9 ) x − 4 a + 1 6
17.2-b2
17.2-b
2 2 2
2 2 2
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
17.2
17 17 1 7
− 1 7 6 - 17^{6} − 1 7 6
1.85041 1.85041 1 . 8 5 0 4 1
( a − 3 ) (a-3) ( a − 3 )
2 2 2
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3Nn
1 1 1
2 2 2
2.202689616 2.202689616 2 . 2 0 2 6 8 9 6 1 6
8.036318802 8.036318802 8 . 0 3 6 3 1 8 8 0 2
3.471552899
516632309525 24137569 a + 2632534734107 24137569 \frac{516632309525}{24137569} a + \frac{2632534734107}{24137569} 2 4 1 3 7 5 6 9 5 1 6 6 3 2 3 0 9 5 2 5 a + 2 4 1 3 7 5 6 9 2 6 3 2 5 3 4 7 3 4 1 0 7
[ a + 1 \bigl[a + 1 [ a + 1 , − a + 1 -a + 1 − a + 1 , 0 0 0 , − 8 a − 6 -8 a - 6 − 8 a − 6 , 3 a + 53 ] 3 a + 53\bigr] 3 a + 5 3 ]
y 2 + ( a + 1 ) x y = x 3 + ( − a + 1 ) x 2 + ( − 8 a − 6 ) x + 3 a + 53 {y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-8a-6\right){x}+3a+53 y 2 + ( a + 1 ) x y = x 3 + ( − a + 1 ) x 2 + ( − 8 a − 6 ) x + 3 a + 5 3
20.1-a1
20.1-a
4 4 4
4 4 4
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
20.1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
− 2 8 ⋅ 5 2 - 2^{8} \cdot 5^{2} − 2 8 ⋅ 5 2
1.92714 1.92714 1 . 9 2 7 1 4
( 2 , a ) , ( 5 , a + 1 ) (2,a), (5,a+1) ( 2 , a ) , ( 5 , a + 1 )
1 1 1
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2
9.101597095 9.101597095 9 . 1 0 1 5 9 7 0 9 5
14.39552905 14.39552905 1 4 . 3 9 5 5 2 9 0 5
3.211948519
− 449312768164 25 a + 2291054610364 25 -\frac{449312768164}{25} a + \frac{2291054610364}{25} − 2 5 4 4 9 3 1 2 7 6 8 1 6 4 a + 2 5 2 2 9 1 0 5 4 6 1 0 3 6 4
[ a \bigl[a [ a , a a a , a a a , 223 a − 1105 223 a - 1105 2 2 3 a − 1 1 0 5 , − 3866 a + 19765 ] -3866 a + 19765\bigr] − 3 8 6 6 a + 1 9 7 6 5 ]
y 2 + a x y + a y = x 3 + a x 2 + ( 223 a − 1105 ) x − 3866 a + 19765 {y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(223a-1105\right){x}-3866a+19765 y 2 + a x y + a y = x 3 + a x 2 + ( 2 2 3 a − 1 1 0 5 ) x − 3 8 6 6 a + 1 9 7 6 5
20.1-a2
20.1-a
4 4 4
4 4 4
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
20.1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
2 4 ⋅ 5 4 2^{4} \cdot 5^{4} 2 4 ⋅ 5 4
1.92714 1.92714 1 . 9 2 7 1 4
( 2 , a ) , ( 5 , a + 1 ) (2,a), (5,a+1) ( 2 , a ) , ( 5 , a + 1 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 2 2
4.550798547 4.550798547 4 . 5 5 0 7 9 8 5 4 7
28.79105811 28.79105811 2 8 . 7 9 1 0 5 8 1 1
3.211948519
− 26162592 625 a + 134634992 625 -\frac{26162592}{625} a + \frac{134634992}{625} − 6 2 5 2 6 1 6 2 5 9 2 a + 6 2 5 1 3 4 6 3 4 9 9 2
[ a \bigl[a [ a , a a a , a a a , 18 a − 60 18 a - 60 1 8 a − 6 0 , − 50 a + 306 ] -50 a + 306\bigr] − 5 0 a + 3 0 6 ]
y 2 + a x y + a y = x 3 + a x 2 + ( 18 a − 60 ) x − 50 a + 306 {y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(18a-60\right){x}-50a+306 y 2 + a x y + a y = x 3 + a x 2 + ( 1 8 a − 6 0 ) x − 5 0 a + 3 0 6
20.1-a3
20.1-a
4 4 4
4 4 4
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
20.1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
− 2 8 ⋅ 5 8 - 2^{8} \cdot 5^{8} − 2 8 ⋅ 5 8
1.92714 1.92714 1 . 9 2 7 1 4
( 2 , a ) , ( 5 , a + 1 ) (2,a), (5,a+1) ( 2 , a ) , ( 5 , a + 1 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2
2.275399273 2.275399273 2 . 2 7 5 3 9 9 2 7 3
14.39552905 14.39552905 1 4 . 3 9 5 5 2 9 0 5
3.211948519
3507883972 390625 a + 17822712628 390625 \frac{3507883972}{390625} a + \frac{17822712628}{390625} 3 9 0 6 2 5 3 5 0 7 8 8 3 9 7 2 a + 3 9 0 6 2 5 1 7 8 2 2 7 1 2 6 2 8
[ a \bigl[a [ a , a a a , a a a , 13 a − 35 13 a - 35 1 3 a − 3 5 , − 98 a + 549 ] -98 a + 549\bigr] − 9 8 a + 5 4 9 ]
y 2 + a x y + a y = x 3 + a x 2 + ( 13 a − 35 ) x − 98 a + 549 {y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(13a-35\right){x}-98a+549 y 2 + a x y + a y = x 3 + a x 2 + ( 1 3 a − 3 5 ) x − 9 8 a + 5 4 9
20.1-a4
20.1-a
4 4 4
4 4 4
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
20.1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
2 20 ⋅ 5 2 2^{20} \cdot 5^{2} 2 2 0 ⋅ 5 2
1.92714 1.92714 1 . 9 2 7 1 4
( 2 , a ) , ( 5 , a + 1 ) (2,a), (5,a+1) ( 2 , a ) , ( 5 , a + 1 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2
2.275399273 2.275399273 2 . 2 7 5 3 9 9 2 7 3
14.39552905 14.39552905 1 4 . 3 9 5 5 2 9 0 5
3.211948519
2494464 25 a + 12763136 25 \frac{2494464}{25} a + \frac{12763136}{25} 2 5 2 4 9 4 4 6 4 a + 2 5 1 2 7 6 3 1 3 6
[ 0 \bigl[0 [ 0 , a − 1 a - 1 a − 1 , 0 0 0 , 18 a − 87 18 a - 87 1 8 a − 8 7 , − 49 a + 251 ] -49 a + 251\bigr] − 4 9 a + 2 5 1 ]
y 2 = x 3 + ( a − 1 ) x 2 + ( 18 a − 87 ) x − 49 a + 251 {y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(18a-87\right){x}-49a+251 y 2 = x 3 + ( a − 1 ) x 2 + ( 1 8 a − 8 7 ) x − 4 9 a + 2 5 1
20.1-b1
20.1-b
4 4 4
4 4 4
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
20.1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
− 2 20 ⋅ 5 2 - 2^{20} \cdot 5^{2} − 2 2 0 ⋅ 5 2
1.92714 1.92714 1 . 9 2 7 1 4
( 2 , a ) , ( 5 , a + 1 ) (2,a), (5,a+1) ( 2 , a ) , ( 5 , a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
14.39552905 14.39552905 1 4 . 3 9 5 5 2 9 0 5
2.117396641
− 449312768164 25 a + 2291054610364 25 -\frac{449312768164}{25} a + \frac{2291054610364}{25} − 2 5 4 4 9 3 1 2 7 6 8 1 6 4 a + 2 5 2 2 9 1 0 5 4 6 1 0 3 6 4
[ 0 \bigl[0 [ 0 , a + 1 a + 1 a + 1 , 0 0 0 , 962 a + 4910 962 a + 4910 9 6 2 a + 4 9 1 0 , − 11906 a − 60710 ] -11906 a - 60710\bigr] − 1 1 9 0 6 a − 6 0 7 1 0 ]
y 2 = x 3 + ( a + 1 ) x 2 + ( 962 a + 4910 ) x − 11906 a − 60710 {y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(962a+4910\right){x}-11906a-60710 y 2 = x 3 + ( a + 1 ) x 2 + ( 9 6 2 a + 4 9 1 0 ) x − 1 1 9 0 6 a − 6 0 7 1 0
20.1-b2
20.1-b
4 4 4
4 4 4
Q ( 26 ) \Q(\sqrt{26}) Q ( 2 6 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
20.1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
2 16 ⋅ 5 4 2^{16} \cdot 5^{4} 2 1 6 ⋅ 5 4
1.92714 1.92714 1 . 9 2 7 1 4
( 2 , a ) , ( 5 , a + 1 ) (2,a), (5,a+1) ( 2 , a ) , ( 5 , a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
1 1 1
28.79105811 28.79105811 2 8 . 7 9 1 0 5 8 1 1
2.117396641
− 26162592 625 a + 134634992 625 -\frac{26162592}{625} a + \frac{134634992}{625} − 6 2 5 2 6 1 6 2 5 9 2 a + 6 2 5 1 3 4 6 3 4 9 9 2
[ 0 \bigl[0 [ 0 , a + 1 a + 1 a + 1 , 0 0 0 , − 258 a − 1310 -258 a - 1310 − 2 5 8 a − 1 3 1 0 , − 2318 a − 11822 ] -2318 a - 11822\bigr] − 2 3 1 8 a − 1 1 8 2 2 ]
y 2 = x 3 + ( a + 1 ) x 2 + ( − 258 a − 1310 ) x − 2318 a − 11822 {y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-258a-1310\right){x}-2318a-11822 y 2 = x 3 + ( a + 1 ) x 2 + ( − 2 5 8 a − 1 3 1 0 ) x − 2 3 1 8 a − 1 1 8 2 2