Learn more

Refine search


Results (1-50 of 186 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1.1-a1 1.1-a \(\Q(\sqrt{26}) \) \( 1 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.736148266$ 0.649667488 \( -23788477376 \) \( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( 595 a - 3050\) , \( 20142 a - 102714\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(595a-3050\right){x}+20142a-102714$
1.1-a2 1.1-a \(\Q(\sqrt{26}) \) \( 1 \) 0 $\Z/5\Z$ $\mathrm{SU}(2)$ $1$ $18.40370665$ 0.649667488 \( 64 \) \( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( -5 a + 10\) , \( -3 a + 6\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-5a+10\right){x}-3a+6$
1.1-b1 1.1-b \(\Q(\sqrt{26}) \) \( 1 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.736148266$ 1.804631911 \( -23788477376 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 2396 a - 12214\) , \( 139366 a - 710632\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(2396a-12214\right){x}+139366a-710632$
1.1-b2 1.1-b \(\Q(\sqrt{26}) \) \( 1 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $18.40370665$ 1.804631911 \( 64 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -4 a + 26\) , \( 46 a - 232\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-4a+26\right){x}+46a-232$
8.1-a1 8.1-a \(\Q(\sqrt{26}) \) \( 2^{3} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $8.909190355$ 1.747235979 \( -23504 a - 119652 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -2 a + 22\) , \( -10 a + 58\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-2a+22\right){x}-10a+58$
8.1-b1 8.1-b \(\Q(\sqrt{26}) \) \( 2^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.309407382$ $8.909190355$ 2.162430844 \( 23504 a - 119652 \) \( \bigl[a\) , \( a\) , \( 0\) , \( 5 a + 26\) , \( 10 a + 51\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(5a+26\right){x}+10a+51$
8.1-c1 8.1-c \(\Q(\sqrt{26}) \) \( 2^{3} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $8.909190355$ 1.747235979 \( 23504 a - 119652 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 2 a + 22\) , \( 10 a + 58\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2a+22\right){x}+10a+58$
8.1-d1 8.1-d \(\Q(\sqrt{26}) \) \( 2^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.309407382$ $8.909190355$ 2.162430844 \( -23504 a - 119652 \) \( \bigl[a\) , \( -a\) , \( 0\) , \( -5 a + 26\) , \( -10 a + 51\bigr] \) ${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(-5a+26\right){x}-10a+51$
9.1-a1 9.1-a \(\Q(\sqrt{26}) \) \( 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $21.40949540$ 4.198747493 \( -\frac{778688}{729} \) \( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( 15 a - 92\) , \( -104 a + 521\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(15a-92\right){x}-104a+521$
9.1-a2 9.1-a \(\Q(\sqrt{26}) \) \( 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $42.81899080$ 4.198747493 \( \frac{78402752}{27} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 356 a - 1810\) , \( -7554 a + 38516\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(356a-1810\right){x}-7554a+38516$
9.1-b1 9.1-b \(\Q(\sqrt{26}) \) \( 3^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.327721564$ $21.40949540$ 1.376020096 \( -\frac{778688}{729} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 76 a - 382\) , \( -1490 a + 7600\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(76a-382\right){x}-1490a+7600$
9.1-b2 9.1-b \(\Q(\sqrt{26}) \) \( 3^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.327721564$ $42.81899080$ 1.376020096 \( \frac{78402752}{27} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( 93 a - 445\) , \( -988 a + 5086\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(93a-445\right){x}-988a+5086$
10.1-a1 10.1-a \(\Q(\sqrt{26}) \) \( 2 \cdot 5 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $17.05624564$ 1.672502487 \( -\frac{37617129}{25000} a + \frac{44393049}{6250} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 5 a - 8\) , \( 26 a - 119\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(5a-8\right){x}+26a-119$
10.1-a2 10.1-a \(\Q(\sqrt{26}) \) \( 2 \cdot 5 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.682249825$ 1.672502487 \( -\frac{530618171482888843761}{10} a + \frac{1352816205329086378722}{5} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 3145 a - 16048\) , \( 224946 a - 1147199\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(3145a-16048\right){x}+224946a-1147199$
10.1-b1 10.1-b \(\Q(\sqrt{26}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.536698983$ $17.17500600$ 1.807760930 \( -\frac{391019}{640} a + \frac{357337}{80} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 1479 a - 7517\) , \( -61002 a + 311088\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1479a-7517\right){x}-61002a+311088$
10.1-c1 10.1-c \(\Q(\sqrt{26}) \) \( 2 \cdot 5 \) 0 $\Z/5\Z$ $\mathrm{SU}(2)$ $1$ $17.05624564$ 1.672502487 \( -\frac{37617129}{25000} a + \frac{44393049}{6250} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 8 a + 28\) , \( 12 a + 48\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(8a+28\right){x}+12a+48$
10.1-c2 10.1-c \(\Q(\sqrt{26}) \) \( 2 \cdot 5 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.682249825$ 1.672502487 \( -\frac{530618171482888843761}{10} a + \frac{1352816205329086378722}{5} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 793 a - 3982\) , \( 26907 a - 137142\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(793a-3982\right){x}+26907a-137142$
10.1-d1 10.1-d \(\Q(\sqrt{26}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.080526241$ $17.17500600$ 3.526070609 \( -\frac{391019}{640} a + \frac{357337}{80} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 368 a - 1872\) , \( -6871 a + 35033\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(368a-1872\right){x}-6871a+35033$
10.2-a1 10.2-a \(\Q(\sqrt{26}) \) \( 2 \cdot 5 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $17.05624564$ 1.672502487 \( \frac{37617129}{25000} a + \frac{44393049}{6250} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -5 a - 8\) , \( -26 a - 119\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-5a-8\right){x}-26a-119$
10.2-a2 10.2-a \(\Q(\sqrt{26}) \) \( 2 \cdot 5 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.682249825$ 1.672502487 \( \frac{530618171482888843761}{10} a + \frac{1352816205329086378722}{5} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -3145 a - 16048\) , \( -224946 a - 1147199\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-3145a-16048\right){x}-224946a-1147199$
10.2-b1 10.2-b \(\Q(\sqrt{26}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.536698983$ $17.17500600$ 1.807760930 \( \frac{391019}{640} a + \frac{357337}{80} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -8 a + 27\) , \( -15 a + 70\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-8a+27\right){x}-15a+70$
10.2-c1 10.2-c \(\Q(\sqrt{26}) \) \( 2 \cdot 5 \) 0 $\Z/5\Z$ $\mathrm{SU}(2)$ $1$ $17.05624564$ 1.672502487 \( \frac{37617129}{25000} a + \frac{44393049}{6250} \) \( \bigl[a + 1\) , \( a\) , \( a\) , \( 5 a + 15\) , \( 3 a + 9\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(5a+15\right){x}+3a+9$
10.2-c2 10.2-c \(\Q(\sqrt{26}) \) \( 2 \cdot 5 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.682249825$ 1.672502487 \( \frac{530618171482888843761}{10} a + \frac{1352816205329086378722}{5} \) \( \bigl[a + 1\) , \( a\) , \( a\) , \( -780 a - 3995\) , \( -30902 a - 157591\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-780a-3995\right){x}-30902a-157591$
10.2-d1 10.2-d \(\Q(\sqrt{26}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.080526241$ $17.17500600$ 3.526070609 \( \frac{391019}{640} a + \frac{357337}{80} \) \( \bigl[1\) , \( a + 1\) , \( 1\) , \( -368 a - 1872\) , \( 6871 a + 35033\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-368a-1872\right){x}+6871a+35033$
13.1-a1 13.1-a \(\Q(\sqrt{26}) \) \( 13 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.629188872$ $3.908720549$ 1.929252060 \( \frac{2292144}{169} a - \frac{11688353}{169} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 20 a - 26\) , \( 70 a - 222\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(20a-26\right){x}+70a-222$
13.1-b1 13.1-b \(\Q(\sqrt{26}) \) \( 13 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.629188872$ $3.908720549$ 1.929252060 \( -\frac{2292144}{169} a - \frac{11688353}{169} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -6 a - 39\) , \( -109 a - 560\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-6a-39\right){x}-109a-560$
13.1-c1 13.1-c \(\Q(\sqrt{26}) \) \( 13 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.908720549$ 0.766563167 \( -\frac{2292144}{169} a - \frac{11688353}{169} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -51 a - 259\) , \( -561 a - 2857\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-51a-259\right){x}-561a-2857$
13.1-d1 13.1-d \(\Q(\sqrt{26}) \) \( 13 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.908720549$ 0.766563167 \( \frac{2292144}{169} a - \frac{11688353}{169} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 51 a - 259\) , \( 561 a - 2857\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(51a-259\right){x}+561a-2857$
16.1-a1 16.1-a \(\Q(\sqrt{26}) \) \( 2^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.326166095$ $24.54409375$ 3.139996309 \( -23504 a - 119652 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -2 a + 22\) , \( 10 a - 58\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2a+22\right){x}+10a-58$
16.1-b1 16.1-b \(\Q(\sqrt{26}) \) \( 2^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $21.28911211$ 2.087569194 \( -23788477376 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 9586 a - 48883\) , \( -1173397 a + 5983175\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(9586a-48883\right){x}-1173397a+5983175$
16.1-b2 16.1-b \(\Q(\sqrt{26}) \) \( 2^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $21.28911211$ 2.087569194 \( 64 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -14 a + 77\) , \( -277 a + 1415\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-14a+77\right){x}-277a+1415$
16.1-c1 16.1-c \(\Q(\sqrt{26}) \) \( 2^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.326166095$ $24.54409375$ 3.139996309 \( 23504 a - 119652 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 2 a + 22\) , \( -10 a - 58\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(2a+22\right){x}-10a-58$
16.1-d1 16.1-d \(\Q(\sqrt{26}) \) \( 2^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.269173633$ $24.54409375$ 2.591330699 \( 23504 a - 119652 \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -3 a + 22\) , \( -6 a + 13\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-3a+22\right){x}-6a+13$
16.1-e1 16.1-e \(\Q(\sqrt{26}) \) \( 2^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $21.28911211$ 2.087569194 \( -23788477376 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 2396 a - 12214\) , \( -139366 a + 710632\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2396a-12214\right){x}-139366a+710632$
16.1-e2 16.1-e \(\Q(\sqrt{26}) \) \( 2^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $21.28911211$ 2.087569194 \( 64 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -4 a + 26\) , \( -46 a + 232\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a+26\right){x}-46a+232$
16.1-f1 16.1-f \(\Q(\sqrt{26}) \) \( 2^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.269173633$ $24.54409375$ 2.591330699 \( -23504 a - 119652 \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 3 a + 22\) , \( 6 a + 13\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(3a+22\right){x}+6a+13$
17.1-a1 17.1-a \(\Q(\sqrt{26}) \) \( 17 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.036318802$ 1.576051784 \( -\frac{516632309525}{24137569} a + \frac{2632534734107}{24137569} \) \( \bigl[a\) , \( a\) , \( a\) , \( 26 a - 103\) , \( -111 a + 602\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(26a-103\right){x}-111a+602$
17.1-a2 17.1-a \(\Q(\sqrt{26}) \) \( 17 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $16.07263760$ 1.576051784 \( \frac{123207298}{4913} a + \frac{636786691}{4913} \) \( \bigl[a\) , \( a\) , \( a\) , \( 6 a - 3\) , \( 5 a + 6\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(6a-3\right){x}+5a+6$
17.1-b1 17.1-b \(\Q(\sqrt{26}) \) \( 17 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.202689616$ $8.036318802$ 3.471552899 \( -\frac{516632309525}{24137569} a + \frac{2632534734107}{24137569} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 8 a - 6\) , \( -3 a + 53\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(8a-6\right){x}-3a+53$
17.1-b2 17.1-b \(\Q(\sqrt{26}) \) \( 17 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.202689616$ $16.07263760$ 3.471552899 \( \frac{123207298}{4913} a + \frac{636786691}{4913} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 3 a + 19\) , \( 4 a + 16\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(3a+19\right){x}+4a+16$
17.2-a1 17.2-a \(\Q(\sqrt{26}) \) \( 17 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $16.07263760$ 1.576051784 \( -\frac{123207298}{4913} a + \frac{636786691}{4913} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -6 a - 3\) , \( -5 a + 6\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-6a-3\right){x}-5a+6$
17.2-a2 17.2-a \(\Q(\sqrt{26}) \) \( 17 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.036318802$ 1.576051784 \( \frac{516632309525}{24137569} a + \frac{2632534734107}{24137569} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -26 a - 103\) , \( 111 a + 602\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-26a-103\right){x}+111a+602$
17.2-b1 17.2-b \(\Q(\sqrt{26}) \) \( 17 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.202689616$ $16.07263760$ 3.471552899 \( -\frac{123207298}{4913} a + \frac{636786691}{4913} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -3 a + 19\) , \( -4 a + 16\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-3a+19\right){x}-4a+16$
17.2-b2 17.2-b \(\Q(\sqrt{26}) \) \( 17 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.202689616$ $8.036318802$ 3.471552899 \( \frac{516632309525}{24137569} a + \frac{2632534734107}{24137569} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -8 a - 6\) , \( 3 a + 53\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-8a-6\right){x}+3a+53$
20.1-a1 20.1-a \(\Q(\sqrt{26}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $9.101597095$ $14.39552905$ 3.211948519 \( -\frac{449312768164}{25} a + \frac{2291054610364}{25} \) \( \bigl[a\) , \( a\) , \( a\) , \( 223 a - 1105\) , \( -3866 a + 19765\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(223a-1105\right){x}-3866a+19765$
20.1-a2 20.1-a \(\Q(\sqrt{26}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $4.550798547$ $28.79105811$ 3.211948519 \( -\frac{26162592}{625} a + \frac{134634992}{625} \) \( \bigl[a\) , \( a\) , \( a\) , \( 18 a - 60\) , \( -50 a + 306\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(18a-60\right){x}-50a+306$
20.1-a3 20.1-a \(\Q(\sqrt{26}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.275399273$ $14.39552905$ 3.211948519 \( \frac{3507883972}{390625} a + \frac{17822712628}{390625} \) \( \bigl[a\) , \( a\) , \( a\) , \( 13 a - 35\) , \( -98 a + 549\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(13a-35\right){x}-98a+549$
20.1-a4 20.1-a \(\Q(\sqrt{26}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.275399273$ $14.39552905$ 3.211948519 \( \frac{2494464}{25} a + \frac{12763136}{25} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 18 a - 87\) , \( -49 a + 251\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(18a-87\right){x}-49a+251$
20.1-b1 20.1-b \(\Q(\sqrt{26}) \) \( 2^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $14.39552905$ 2.117396641 \( -\frac{449312768164}{25} a + \frac{2291054610364}{25} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 962 a + 4910\) , \( -11906 a - 60710\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(962a+4910\right){x}-11906a-60710$
20.1-b2 20.1-b \(\Q(\sqrt{26}) \) \( 2^{2} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $28.79105811$ 2.117396641 \( -\frac{26162592}{625} a + \frac{134634992}{625} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -258 a - 1310\) , \( -2318 a - 11822\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-258a-1310\right){x}-2318a-11822$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.